×
20.11.2015
216.013.8fdc

Результат интеллектуальной деятельности: ОКСИДНО-ЦИНКОВАЯ ВАРИСТОРНАЯ КЕРАМИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля в количественном соотношении, мас.%: ZnO 60,0-85,0, BiO 3,42-9,11, SbO 4,79-12,76, AlO3,18-8,47, CoO 2,53-6,74, NiO 1,08-2,92. Оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Получаемая варисторная керамика имеет напряжение пробоя 3,5-4,4 кВ/мм и коэффициент нелинейности 40-55, что позволяет использовать ее для изготовления высоковольтных варисторов. 1 табл.
Основные результаты: Оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля, отличающаяся тем, что керамика содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 60,0-85,0, BiO 3,42-9,11, SbO 4,79-12,76, AlO 3,18-8,47, CoO 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32.

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН).

В настоящее время применяют варисторы на основе ZnO-керамики. Основными свойствами варисторной керамики являются напряжение пробоя (Ub) и коэффициент нелинейности (α). В промышленном масштабе оксидно-цинковые варисторы выпускают с использованием керамики с Ub=0,2-0,4 кВ/мм и α=40-50. Для работы ОПН в высоковольтных электрических сетях необходимы варисторы на основе керамики с Ub=3-4 кВ/мм. Это позволит уменьшить толщину варисторов и, соответственно, уменьшить габариты и вес высоковольтных ОПН на их основе.

Известна оксидно-цинковая варисторная керамика (см. Hembram K., Sivaprahasam D., Rao T.N. Combustion synthesis of doped nanocrystalline ZnO powders for varistors applications // Journal of the European Ceramic Society, 2011, Vol. 31, Issue 10, P. 1905-1913) состава, мас. %: ZnO 88,0, Bi2O3 5,0, Sb2O3 3,5, Co3O4 1,5, Cr2O3 1,0, MnO2 1,0, которую получают путем химического сжигания исходных компонентов, прокалки продукта сжигания при 750°C, таблетирования образующегося порошка путем холодного прессования и 2-ступенчатого спекания при температуре 600°C в течение 120 минут на первой ступени и температуре 925°C в течение 240 минут на второй ступени. Полученная керамика имеет Ub=0,89 кВ/мм и α=112.

Недостатком данной варисторной керамики является то, что при обеспечении высоких значений коэффициента нелинейности напряжение пробоя не превышает 0,89 кВ/мм. Это усложняет использование варисторов на основе керамики в высоковольтных электрических сетях.

Известна также оксидно-цинковая варисторная керамика (см. пат. 8217751 США, МПК H01C 7/10 (2006.1), 2012) состава, мас. %: ZnO 94,69, Bi2O3 3,0, Sb2O3 1,5, Al2O3 0,01, Co3O4 0,5, NiO 0,2, Mn2O3 или Li2CO3 0,1, которую получают путем прокалки смеси исходных нанодисперсных оксидов при 550°C, таблетирования образующегося порошка, спекания таблеток горячим прессованием при 800-850°C. Полученная керамика имеет напряжение пробоя Ub=1,71-1,85 кВ/мм и коэффициент нелинейности α=75-77.

Недостатками известной варисторной керамики является то, что при обеспечении высоких значений коэффициента нелинейности значение напряжения пробоя является относительно невысоким (1,85 кВ/мм). Кроме того, исходные оксиды берут в виде нанодисперсных порошков, а спекание керамических таблеток осуществляют путем горячего прессования, что существенно затрудняет и удорожает производство керамики.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении напряжения пробоя высоковольтной оксидно-цинковой варисторной керамики при обеспечении ее высокого коэффициента нелинейности.

Технический результат достигается тем, что оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля, согласно изобретению содержит оксидные компоненты в следующем количественном соотношении, мас. %: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Оксид цинка является основным компонентом заявленной керамики. Содержание оксида цинка в количестве 60-85 мас. % обеспечивает получение керамики с повышенным напряжением пробоя и высоким коэффициентом нелинейности. При содержании ZnO более 85 мас. % и менее 60 мас. % резко снижаются напряжение пробоя керамики и величина коэффициента нелинейности.

Количественное содержание добавок в виде оксидов висмута, сурьмы, алюминия, кобальта и никеля зависит от содержания оксида цинка и должно отвечать соотношению: Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92, при этом указанные оксиды висмута, сурьмы, алюминия, кобальта и никеля должны соотноситься как 1,0:1,4:0,93:0,74:0,32. Это обеспечивает стабильно высокую величину как напряжения пробоя керамики, так и коэффициента нелинейности.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении высоковольтной оксидно-цинковой варисторной керамики с повышенным напряжением пробоя и высоким коэффициентом нелинейности.

Особенности и преимущества заявляемого изобретения могут быть пояснены нижеследующими Примерами.

Керамику согласно изобретению получают следующим образом. Вначале осуществляют синтез нанодисперсного керамического порошка методом химического сжигания с использованием сахарного топлива. В качестве исходных компонентов берут порошкообразные гидратированные нитраты металлов: Zn(NO3)2·6H2O, Bi(NO3)3·5H2O, Al(NO3)3·9H2O, Co(NO3)2·6H2O, Ni(NO3)2·6H2O и виннокислый раствор сурьмы. Исходные компоненты смешивают в стехиометрическом количестве с коммерческим сахаром, нагревают при 145°C в течение 40 минут и продукт сжигания прокаливают при 700°C в течение 60 минут. Из полученного керамического порошка со средним размером частиц 30 нм прессуют таблетки на гидравлическом прессе при давлении 140 МПа, которые подвергают двухступенчатому спеканию при температуре 700°C в течение 60 минут на первой ступени и при 935°C в течение 240 минут на второй ступени с получением варисторной керамики состава, мас. %: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2О3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92. При этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32.

Для определения варисторных свойств керамики на торцевые поверхности керамических таблеток наносят пленочные электроды с использованием серебряной пасты.

Состав и свойства варисторной керамики, полученной согласно Примерам 1-6 осуществления изобретения, представлены в Таблице.

Из данных Таблицы следует, что в диапазоне заявленного содержания оксидных компонентов получаемая оксидно-цинковая варисторная керамика имеет напряжение пробоя 3,5-4,4 кВ/мм и коэффициент нелинейности 40-55, что позволяет использовать ее для изготовления высоковольтных варисторов. Нанодисперсные порошки варисторной керамики по изобретению в отличие от прототипа получают в процессе их синтеза из гидратированных нитратов металлов и спекают без использования горячего прессования, что упрощает и удешевляет производство керамики.

Оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля, отличающаяся тем, что керамика содержит оксидные компоненты в следующем количественном соотношении, мас.%: ZnO 60,0-85,0, BiO 3,42-9,11, SbO 4,79-12,76, AlO 3,18-8,47, CoO 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32.
Источник поступления информации: Роспатент

Показаны записи 61-67 из 67.
26.08.2017
№217.015.dfb1

Способ получения модифицированного титаносиликата фармакосидеритового типа

Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов. Берут хлоридный титансодержащий реагент в виде четыреххлористого титана...
Тип: Изобретение
Номер охранного документа: 0002625118
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.05f0

Способ переработки фторидного редкоземельного концентрата

Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас. %: 40 F, 13,15 ΣТrО, 0,16 ТhO, 66,4 СаО, обрабатывают фтористоводородной кислотой концентрацией...
Тип: Изобретение
Номер охранного документа: 0002630989
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.060c

Способ переработки сернокислого раствора, содержащего примесные элементы

Изобретение относится к гидрометаллургии и может быть использовано при регенерации сернокислых производственных растворов. Сернокислый раствор, содержащий примесные элементы, подвергают экстракционной обработке с переводом основной части серной кислоты в первичный экстракт, а основной части...
Тип: Изобретение
Номер охранного документа: 0002630988
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0b9f

Способ получения оксида алюминия

Изобретение может быть использовано при получении оксида алюминия с низким содержанием примесей, используемого для выращивания кристаллов, производства керамики и огнеупоров. Нитрат алюминия Al(NO)⋅9HO или хлорид алюминия AlCl⋅6HO смешивают с карбонатом аммония или со смесью карбоната аммония и...
Тип: Изобретение
Номер охранного документа: 0002632437
Дата охранного документа: 04.10.2017
20.03.2019
№219.016.e822

Способ переработки фосфогипса для производства концентрата редкоземельных элементов (рзэ) и гипса

Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и...
Тип: Изобретение
Номер охранного документа: 0002458999
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.464e

Способ переработки титансодержащего концентрата

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего концентрата включает разложение титансодержащего концентрата раствором серной кислоты при нагревании с переводом титана в сернокислый раствор и последующим отделением твердого остатка. В...
Тип: Изобретение
Номер охранного документа: 0002467953
Дата охранного документа: 27.11.2012
29.04.2019
№219.017.4682

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способам выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002465207
Дата охранного документа: 27.10.2012
Показаны записи 81-89 из 89.
29.05.2019
№219.017.6a3b

Способ переработки нефелина

Изобретение относится к области химии и металлургии и может быть использовано при переработке нефелина азотнокислотным способом. Нефелин загружают в предварительно нагретую азотную кислоту равномерным дозированием, отделяют фильтрацией раствор азотнокислых солей от кремнистого остатка....
Тип: Изобретение
Номер охранного документа: 0002460691
Дата охранного документа: 10.09.2012
09.06.2019
№219.017.7a5a

Способ очистки сточных вод от фтора

Изобретение относится к сорбционно-осадительным способам очистки сточных вод от фтора и может быть использовано в горнодобывающей, металлургической, химической и других отраслях промышленности. Для осуществления способа проводят взаимодействие воды с церийсодержащим реагентом в виде сульфата...
Тип: Изобретение
Номер охранного документа: 0002382738
Дата охранного документа: 27.02.2010
10.07.2019
№219.017.ae88

Способ получения наноразмерного порошка сегнетоэлектрика

Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. Способ включает гидролиз соединения редкого металла с образованием осадка редкого металла. Осадок отделяют и суспендируют. В суспензию вводят соединение щелочного или...
Тип: Изобретение
Номер охранного документа: 0002362741
Дата охранного документа: 27.07.2009
10.07.2019
№219.017.af10

Способ извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для способа извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов. Способ включает обработку отходов серной кислотой при повышенной температуре и подаче пероксида водорода с переводом в...
Тип: Изобретение
Номер охранного документа: 0002412267
Дата охранного документа: 20.02.2011
10.07.2019
№219.017.b002

Способ получения твердого ионного электролита rbagi

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное...
Тип: Изобретение
Номер охранного документа: 0002407090
Дата охранного документа: 20.12.2010
02.10.2019
№219.017.cd3c

Способ переработки фторидного редкоземельного концентрата

Изобретение относится к переработке фторсодержащих концентратов редкоземельных элементов (РЗЭ). Бастнезитовый концентрат обрабатывают низкоконцентрированной минеральной кислотой при повышенной температуре в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и...
Тип: Изобретение
Номер охранного документа: 0002701577
Дата охранного документа: 30.09.2019
04.02.2020
№220.017.fd7c

Высоковольтная оксидно-цинковая варисторная керамика

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Высоковольтная оксидно-цинковая варисторная керамика содержит оксиды...
Тип: Изобретение
Номер охранного документа: 0002712822
Дата охранного документа: 31.01.2020
10.07.2020
№220.018.3117

Способ определения значения стационарного сопротивления заземляющего устройства опор воздушных линий электропередачи без отсоединения грозозащитного троса и устройство для его реализации

Использование: для определения значения стационарного сопротивления заземляющего устройства (ЗУ) опор воздушных линий электропередачи (ВЛ) без отсоединения грозозащитного троса и устройство для его реализации. Сущность изобретения заключается в том, что способ определения значения стационарного...
Тип: Изобретение
Номер охранного документа: 0002726042
Дата охранного документа: 08.07.2020
23.07.2020
№220.018.3590

Способ извлечения редкоземельного концентрата

Изобретение относится к способу извлечения редкоземельного концентрата из раствора, полученного при переработке редкоземельного сырья, и может быть использовано в химической и металлургической промышленности. Осуществляют ступенчатую нейтрализацию раствора, содержащего нитрат или хлорид натрия,...
Тип: Изобретение
Номер охранного документа: 0002727129
Дата охранного документа: 20.07.2020
+ добавить свой РИД