27.10.2015
216.013.89db

Способ получения гельсодержащих композитных материалов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002566894
Дата охранного документа
27.10.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к способу получения гельсодержащих композитных материалов, к материалам, полученным указанным способом, а также к их использованию в некоторых применениях. Рассматривается способ получения композитных материалов, содержащих нанофибриллярные гели целлюлозы, путем обеспечения целлюлозных волокон и, по меньшей мере, одного наполнителя и/или пигмента, объединения целлюлозных волокон и, по меньшей мере, одного наполнителя и/или пигмента, фибриллирования целлюлозных волокон в присутствии, по меньшей мере, одного наполнителя и/или пигмента до тех пор, пока не образуется гель, последующего обеспечения, по меньшей мере, одного дополнительного наполнителя и/или пигмента и объединения геля с, по меньшей мере, одним дополнительным наполнителем и/или пигментом. Задача изобретения заключается в создании экономически эффективных и экологически допустимых композитных материалов. 4 н. и 13 з.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Настоящее изобретение относится к способу получения гельсодержащих композитных материалов, к материалам, полученным указанным способом, а также к их использованию в некоторых применениях.

Композитный материал представляет собой в своей основе комбинацию двух или более материалов, каждый из которых сохраняет свои собственные отличительные свойства. Получаемый материал имеет характеристики, не характеризующие компоненты в отдельности. Наиболее часто композитные материалы имеют объемную фазу, которая является непрерывной, называемую матрицей, и дисперсную прерывную фазу, называемую армированием. Некоторые другие примеры основных композитов включают в себя бетон (цемент, смешанный с песком и агрегатом), железобетон (стальной пруток в бетоне) и стеклопластик (стеклянные стренги в полимерной матрице).

Следующее является некоторыми из причин, почему композиты выбраны для некоторых применений:

- высокое отношение прочности к массе (высокая разрывная прочность низкой плотности),

- высокое сопротивление ползучести,

- высокая прочность на растяжение при повышенных температурах,

- высокая ударная вязкость.

Обычно армирующие материалы являются прочными, тогда как матрица является обычно пластичным или вязким материалом. Если композит разработан и изготовлен правильно, он сочетает прочность армирования с ударной вязкостью матрицы с получением комбинации желаемых свойств, не доступных в любом отдельном традиционном материале. Например, композиты полимер/керамика имеют больший модуль упругости, чем полимерный компонент, но не являются такими хрупкими, как керамика.

Поскольку армирующий материал имеет важнейшее значение в механизме упрочнения композита, удобно классифицировать композиты согласно характеристикам армирования. Обычно используют следующие три категории:

а) «армированный волокном», где главным несущим нагрузку компонентом является волокно,

b) «армированный частицами», где нагрузка распределяется матрицей и частицами,

с) «диспергированно упрочненный», где главным несущим нагрузку компонентом является матрица,

d) «конструкционные композиты», где свойства зависят от составляющих и геометрической конструкции.

Обычно, прочность композита зависит, главным образом, от количества, расположения и типа волоконного армирования (или в виде частиц) в смоле. Кроме того, композит часто имеет в своей рецептуре наполнители и добавки, которые изменяют технологические параметры или характеристики.

Прогрессивные композиты используют комбинацию смол и волокон, обычно углерод/графит, кевлар или стекловолокно с эпоксидной смолой. Волокна обеспечивают высокую жесткость, тогда как окружающая полимерная матрица удерживает структуру вместе. Основная концепция разработки композитов состоит в том, что объемная фаза принимает нагрузку на большую площадь поверхности и передает ее армирующему материалу, который может нести большую нагрузку. Указанные материалы были впервые разработаны для использования в аэрокосмической отрасли, поскольку для некоторых применений они имеют более высокое отношение жесткость/масса и прочность/масса, чем металлы. Это значит, что металлические детали могут быть заменены более легкими деталями, изготовленными из прогрессивных композитов.

Таким образом, в современной технике хорошо известно внедрение полимеров и подобного в композитах, которые, однако, являются относительно дорогостоящими и экологически вредными. Кроме того, введение наполнителей, как показано, обычно требует поверхностной обработки, требующей высоких производственных затрат.

Таким образом, еще существует потребность в создании экономически эффективных и экологически допустимых композитных материалов.

В результате поиска решения данной задачи были исследованы некоторые материалы и среди прочего целлюлоза и карбонат кальция.

Целлюлоза является структурным компонентом стенки первичной клетки зеленых растений и наиболее распространенным органическим соединением на земле. Она представляет высокий интерес для многих применений и отраслей.

Целлюлозная пульпа в качестве исходного материала вырабатывается из древесины или стеблей растений, таких как конопля, лен и манильская пенька. Волокна пульпы состоят, главным образом, из целлюлозы и других органических компонентов (гемицеллюлозы и лигнина). Макромолекулы целлюлозы (состоящие из 1-4 гликозидных связанных молекул β-D-глюкозы) соединены вместе водородными связями с образованием так называемой первичной фибриллы (мицеллы), которая имеет кристаллические и аморфные домены. Несколько первичных фибрилл (около 55) образуют так называемую микрофибриллу. Около 250 указанных микрофибрилл образуют фибриллу.

Фибриллы располагаются различными слоями (которые могут содержать гемицеллюлозу и лигнин) с образованием волокна. Отдельные волокна также связаны вместе лигнином.

Когда волокна становятся рафинированными под воздействием приложенной энергии, они становятся фибриллированными, т.к. стенки ячеек разрушаются и превращаются в присоединенные ленты, т.е. в фибриллы. Если указанное разрушение продолжается до отделения фибрилл от тела волокна, это высвобождает фибриллы. Разрушение волокон до микрофибрилл называется «микрофибриллированием». Указанный процесс может продолжаться до тех пор, пока не останется никаких волокон, а сохранятся только фибриллы наноразмера (по толщине).

Если процесс идет дальше и разрушает указанные фибриллы до фибрилл мельче и мельче, они в результате становятся целлюлозными фрагментами или нанофибриллярными гелями. В зависимости от того, как долго проводится последняя стадия, некоторые нанофибриллы могут сохраниться среди нанофибриллярного геля. Разрушение до первичных фибрилл может называться «нанофибриллированием», где может быть плавный переход между двумя режимами. Первичные фибриллы образуют в водной среде гель (метастабильную сетку первичных фибрилл), который может называться «нанофибриллярным гелем». Гель, образованный из нанофибрилл, может считаться содержащим наноцеллюлозу.

Нанофибриллярные гели являются желательными, т.к. они содержат очень мелкие фибриллы, считающимися составляющими отчасти наноцеллюлозу, показывающие потенциал более прочного скрепления между собой или с любым другим присутствующим материалом, чем фибриллы, которые не являются такими мелкими или не показывают наноцеллюлозную структуру.

Нанофибриллярные гели целлюлозы известны из неопубликованной заявки на Европейский патент № 09/156703.2. Однако в ней отсутствует рассмотрение формования композитных материалов.

Теперь было найдено, что такие гели целлюлозы могут быть формованы в композитные материалы, которые могут быть получены легче/быстрее при введении наполнителей и/или пигментов в такие гели, и получена улучшенная прогонность, и которые являются экологически более приемлемыми по сравнению со многими другими композитными материалами.

Таким образом, вышеуказанная проблема решается способом получения композитных материалов, содержащих нанофибриллярные гели целлюлозы, характеризуемым следующими стадиями:

а) обеспечение целлюлозных волокон;

b) обеспечение, по меньшей мере, одного наполнителя и/или пигмента;

с) объединение целлюлозных волокон стадии а) и, по меньшей мере, одного наполнителя и/или пигмента стадии b);

d) фибриллирование целлюлозных волокон в присутствии, по меньшей мере, одного наполнителя и/или пигмента до тех пор, пока не образуется гель;

е) обеспечение, по меньшей мере, одного дополнительного наполнителя и/или пигмента;

f) объединение геля стадии d) с, по меньшей мере, одним дополнительным наполнителем и/или пигментом стадии е).

Нанофибриллярная целлюлоза в контексте настоящего изобретения означает волокна, которые являются, по меньшей мере, частично разрушенными до первичных фибрилл. Если указанные первичные волокна находятся в водной среде, образуется гель (метастабильная сетка первичных фибрилл, считающихся в пределе тонины по существу наноцеллюлозой), который обозначается «нанофибриллярным гелем», в котором имеется плавный переход между нановолокнами и нанофибриллярным гелем, содержащий нанофибриллярные гели, содержащие различную степень нанофибрилл, все которые определяются термином «нанофибриллярные гели целлюлозы» согласно настоящему изобретению.

В данном отношении фибриллирование в контексте настоящего изобретения означает любой процесс, который предопределенно разрушает волокна и фибриллы вдоль их продольной оси с получением в результате снижения диаметра волокон и фибрилл, соответственно.

Согласно способу настоящего изобретения фибриллирование целлюлозных волокон в присутствии, по меньшей мере, одного наполнителя и/или пигмента обеспечивает нанофибриллярный гель целлюлозы. Фибриллирование осуществляется до тех пор, пока не образуется гель, где образование геля подтверждается контролем вязкости в зависимости от скорости сдвига. При постепенном увеличении скорости сдвига получают определенную кривую, отражающую снижение вязкости. Если затем скорость сдвига постепенно снижается, вязкость увеличивается снова, но соответствующие значения, по меньшей мере, в части интервала скорости сдвига, когда сдвиг приближается к нулю, являются ниже, чем при увеличении скорости сдвига, что графически выражается проявлением гистерезиса на графике вязкости от скорости сдвига. Как только наблюдается указанная характеристика, образуется нанофибриллярный гель целлюлозы согласно настоящему изобретению. Кроме того, подробности относительно получения нанофибриллярного геля могут быть получены из неопубликованной заявки на Европейский патент № 09/156703.

Целлюлозные волокна, которые могут использоваться в способе настоящего изобретения, могут быть такими, которые содержатся в природной, химической, механической, хемимеханической, термомеханической целлюлозах. Особенно используемыми являются пульпы, выбранные из группы, содержащей эвкалиптовую целлюлозу, еловую целлюлозу, сосновую целлюлозу, буковую целлюлозу, конопляную целлюлозу, хлопковую целлюлозу, бамбуковую целлюлозу, багассу и их смеси. В одном варианте все или часть целлюлозных волокон могут быть получены со стадии регенерирования материала, содержащего целлюлозные волокна. Таким образом, целлюлоза может быть регенерированной целлюлозой и/или целлюлозой, очищенной от краски.

Размер целлюлозных волокон, в принципе, не является критическим. Используемыми в настоящем изобретении обычно являются любые коммерчески доступные волокна и перерабатываемые в устройстве, используемом для их фибриллирования. В зависимости от их происхождения целлюлозные волокна могут иметь длину от 50 мм до 0,1 мкм. Такие волокна, а также волокна, имеющие длину, предпочтительно, от 20 мм до 0,5 мкм, более предпочтительно, от 10 мм до 1 мм, и обычно от 2 до 5 мм, могут преимущественно использоваться в настоящем изобретении, в котором также могут использоваться более длинные и более короткие волокна.

Предпочтительно для использования в настоящем изобретении, что целлюлозные волокна предусматриваются в форме суспензии, особенно, водной суспензии. Предпочтительно, такие суспензии имеют содержание сухого вещества от 0,2 до 35% мас., более предпочтительно, 0,25-10% мас., даже более предпочтительно, 0,5-5% мас., особенно, 1-4% мас., наиболее предпочтительно, 1,3-3% мас., например, 1,5% мас.

По меньшей мере, один наполнитель и/или пигмент стадий b) и с) независимо выбраны из группы, содержащей осажденный карбонат кальция ((ОКК)(РСС)), природный измельченный карбонат кальция ((ИКК)(GCC)), карбонат кальция с модифицированной поверхностью, доломит, тальк, бентонит, глину, магнезит, сатинит, сепиолит, гунтит, диатомит, силикаты и их смеси.

Осажденный карбонат кальция, который может иметь фатеритную, кальцитную или арагонитную кристаллическую структуру, и/или природный измельченный карбонат кальция, который может быть выбран из мрамора, известняка и/или мела, являются особенно предпочтительными.

В отдельном варианте может быть предпочтительным использование ультрамелкого дискретного призматического, разностороннего или ромбоэдрального осажденного карбоната кальция.

Наполнитель (наполнители) и/или пигмент (пигменты) могут быть предусмотрены в форме порошка, хотя они, предпочтительно, вводятся в форме суспензии, такой как водная суспензия. В данном случае содержание сухого вещества суспензии не является критическим, если она является жидкостью, подаваемой насосом.

В предпочтительном варианте частицы наполнителя и/или пигмента стадии b) имеют средний размер частиц от 0,01 до 15 мкм, предпочтительно, 0,1-10 мкм, более предпочтительно, 0,3-5 мкм, особенно от 0,5 до 4 мкм, и, наиболее предпочтительно, 0,7-3,2 мкм, например, 2 мкм.

Для определения среднего размера частиц d50 для частиц, имеющих d50 больше 0,5 мкм, используют устройство Sedigraph 5100 от компании Micrometrics, США. Измерение осуществляют в водном растворе 0,1% мас. Na4P2O7. Образцы диспергируют с использованием высокоскоростной мешалки и ультразвука. Для определения среднеобъемного размера частиц для частиц, имеющих d50≤500 нм, используют прибор Malvern Zetasizer Nano ZS от компании Malvern, Великобритания. Измерение осуществляют в водном растворе 0,1% мас. Na4P2O7. Образцы диспергируют с использованием высокоскоростной мешалки и ультразвука.

Получают особенное преимущество, если наполнитель (наполнители) и/или пигмент (пигменты), вводимые на стадии е), являются довольно мелким продуктом в плане размера частиц и, особенно предпочтительно, содержат, по меньшей мере, фракцию частиц, имеющих средний диаметр d50 в нанометрическом интервале, в противоположность наполнителю (наполнителям) и/или пигменту (пигментам), используемым в образовании геля, которые являются довольно крупными.

Таким образом, является, кроме того, предпочтительным, чтобы частицы наполнителя и/или пигмента стадии е) имели средний размер частиц от 0,01 до 5 мкм, предпочтительно, 0,05-1,5 мкм, более предпочтительно, 0,1-0,8 мкм, и, наиболее предпочтительно, 0,2-0,5 мкм, например, 0,3 мкм, где размер частиц определяется, как указано выше.

Наполнитель (наполнители) и/или пигмент (пигменты) могут быть объединены с диспергирующими агентами, такими как диспергирующие агенты, выбранные из группы, содержащей гомополимеры или сополимеры поликарбоновых кислот и/или их солей или таких производных, как сложные эфиры на основе, например, акриловой кислоты, метакриловой кислоты, малеиновой кислоты, фумаровой кислоты, итаконовой кислоты, например, акриламид или акриловые сложные эфиры, такие как метилметакрилат, или их смеси, полифосфаты щелочного металла, фосфоновая, лимонная и винная кислоты и их соли и сложные эфиры, и их смеси.

Объединение волокон и, по меньшей мере, одного наполнителя и/или пигмента стадий b) и/или е) может быть выполнено при введении наполнителя и/или пигмента в волокна в одну или несколько стадий. Кроме того, волокна могут быть введены в наполнитель и/или пигмент в одну или несколько стадий. Наполнитель и/или пигмент стадии b), а также волокна могут быть введены полностью или порциями перед или в ходе стадии фибриллирования. Однако введение перед фибриллированием является предпочтительным.

В процессе фибриллирования размер наполнителя (наполнителей) и/или пигмента (пигментов), а также размер волокон может быть изменен.

Предпочтительно, массовое отношение волокон к наполнителю (наполнителям) и/или пигменту (пигментам) стадии b) на сухую массу составляет от 1:33 до 10:1, более предпочтительно, от 1:10 до 7:1, даже более предпочтительно, от 1:5 до 5:1, обычно, от 1:3 до 3:1, особенно, от 1:2 до 2:1, и, наиболее предпочтительно, от 1:1,5 до 1,5:1, например, 1:1.

Дозировка наполнителя и/или пигмента на стадии b) может быть критической. Если имеется слишком много наполнителя и/или пигмента, это может влиять на образование геля. Таким образом, если образование геля не наблюдается в определенной комбинации, может быть необходимо снизить количество наполнителя и/или пигмента.

Кроме того, в одном варианте объеденное количество хранится в течение 2-12 ч, предпочтительно, 3-10 ч, более предпочтительно, 4-8 ч, например, 6 ч, до его фибриллирования, т.к. это идеально дает набухание волокон, облегчающее фибриллирование.

Набухание волокон может быть облегчено хранением при увеличенном рН, а также введением растворителей целлюлозы, подобных, например, медь(II)этилендиамину, железо-натрий-тартрату или литий-хлор/диметилацетамину, или любым другим способом, известным в технике.

Фибриллирование выполняется с помощью любого устройства, используемого для этого. Предпочтительно, устройством является гомогенизатор. Им может быть также фрикционная мельница ультратонкого помола, такая как Supermasscolloider, от фирмы Masuko Sangyo Co., Ltd., Япония, или устройства, описанные в US 6214163 или US 6183596.

Подходящими для использования в настоящем изобретении являются любые коммерчески доступные гомогенизаторы, особенно, гомогенизаторы высокого давления, в которых суспензии подаются под высоким давлением через ограничительное отверстие, которое может содержать клапан, и выгружаются под высоким давлением через ограничительное отверстие против жесткой ударной поверхности прямо впереди ограничительного отверстия. Давление может быть создано насосом, таким как плунжерный насос, а ударная поверхность может содержать ударное кольцо, идущее вокруг кольцевого отверстия клапана. Примером гомогенизатора, который может использоваться в настоящем изобретении, является Ariete NS2006L of GEA Niro Soavi. Однако среди прочего также могут использоваться такие гомогенизаторы, как APV Gaulin Series, HST HL Series или Alfa SHL Series.

Кроме того, такие устройства, как фрикционная мельница ультратонкого помола, например, Supermasscoloider, могут преимущественно использоваться в настоящем изобретении.

Кроме того, предпочтительно, массовое отношение волокон к наполнителю и/или пигменту стадии е) на сухую массу составляет от 1:9 до 99:1, предпочтительно, от 1:3 до 9:1, более предпочтительно, от 1:2 до 3:1, например, 2:1.

Что касается общего содержания наполнителя и/или пигмента, особенно предпочтительно, что наполнитель и/или пигмент стадий b) и е) присутствует в количестве от 10% мас. до 95% мас., предпочтительно, от 15% мас. до 90% мас., более предпочтительно, от 20 до 75% мас., даже более предпочтительно, от 25% мас. до 67% мас., особенно, от 33 до 50% мас., на сухую массу композитного материала.

Объединение геля стадии d) с, по меньшей мере, одним другим наполнителем и/или пигментом стадии е) может быть выполнено просто смешением компонентов, например, с помощью шпателя. Кроме того, может быть предпочтительно смешивать компоненты с помощью мешалки с установленным распускающим диском.

Затем полученная смесь может быть обезвожена. В этом отношении может использоваться любой обычно используемый способ, известный специалистам в данной области техники, такой как, например, тепловая сушка, сушка под давлением, вакуумная сушка, сушка вымораживанием или сушка в сверхкритических условиях. Стадия обезвоживания может быть выполнена в хорошо известных устройствах, таких как фильтр-пресс, например, как описано в примерах. Обычно, для получения композитов изобретения могут быть применены другие способы, которые являются хорошо известными в области формования водных систем.

Использование нанофибриллярных гелей целлюлозы, как определено выше, для получения компактного композитного материала является другим аспектом изобретения, где гель комбинируется с, по меньшей мере, одним другим наполнителем и/или пигментом, и полученная комбинация обезвоживается, как описано подробно выше.

Другой аспект настоящего изобретения представляет композитный материал, полученный способом настоящего изобретения или при использовании нанофибриллярных гелей целлюлозы для получения композитного материала, как указано.

Композитный материал может, предпочтительно, использоваться в таких применениях, как в пластиках, красках, резине, бетоне, керамике, панелях, корпусах, фольгах, пленках, покрытиях, экструзионных профилях, клеях, для пищи, или в обмоточно-обтягивающих применениях и может легко заменять некоторые материалы, такие как пластики, используемые, например, в качестве конструкционного материала, упаковки и т.д.

Примеры

Материал

OC-GCC: Omyacarb 10-AV, доступный от Omya AG, мелкий порошок карбоната кальция, полученный из белого мрамора высокой чистоты; среднемассовый размер частиц d50 10 мкм, измеренный с помощью Malvern Mastersizer X.

HO-MB: Hydrocarb HO-MB, доступный от Omya AG, отборный природный измельченный карбонат кальция (мрамор), микрокристаллические частицы ромбоэдральной формы высокой тонины в виде предварительно диспергированной суспензии (содержание сухого вещества 62% мас.), среднемассовый размер частиц d50 0,8 мкм, измеренный с помощью Sedigraph 5100.

Nano-GCC: Природный измельченный карбонат кальция (мрамор от Vermont), диспергированная суспензия (содержание сухого вещества 50% мас.), среднеобъемный размер частиц d50 246 нм, измеренный с помощью Malvern Zetasiser Nano ZS.

Пульпа: Эвкалиптовая пульпа с 25°SR.

Формование геля

120 г эвкалиптовой пульпы в виде сухих матов разрывают на части и смешивают с 5880 г водопроводной воды, и добавляют соответствующее количество OC-GCC (см. таблицу 1). Полученную смесь перемешивают в течение, по меньшей мере, 15 мин с использованием мешалки Pendraulik (распускающий диск) при 4000 об/мин. Фибриллярное содержание рецептур составляет 3% мас.

Получаемые смеси затем фибриллируют во фрикционной мельнице ультратонкого помола (Supermasscoloider от Masuko Sangyo Co., Ltd., Япония (модель MKCA 6-2) за одиночные прогоны при «зазоре» -50 мкм (динамическая 0-точка) по следующей программе:

5 прогонов при 2500 об/мин,

2 прогона при 2000 об/мин,

2 прогона при 1500 об/мин,

2 прогона при 1000 об/мин,

2 прогона при 750 об/мин,

2 прогона при 500 об/мин.

Измельчающими камнями является карбид кремния с частицами грит-класса 46 (грит-размер 297-420 мкм).

Таблица 1
Состав и характеристики геля, используемого
для компактных рецептур
Образец Части ИКК
на волокна пульпы (сух./сух.)
Энергия
на входе
[МВтч/дмт]
Вязкость
по Брукфилду
при 2% мас.
сухого
вещества [МПа·с]
1 1 5,38 1612

Получение рецептур

Для получения и испытания компактов наноцеллюлозных гелей получают следующие рецептуры для получения образцов, как указано в таблице 2.

Таблица 2
Композиции компактных рецептур
Образец ИКК (GCC) в рецептуре геля [сухие части на сухие волокна] (% мас. на всю рецептуру) Дополнительный ИКК (GCC) [сухие части на сухие волокна]
(% мас. на всю рецептуру)
Общий ИКК (GCC) [сухие части на сухие волокна]
(% мас. на всю рецептуру)
1 1 ч. (50% масс.) 0 ч. (0% масс.) 1 ч.
(50% масс.)
2 (образец 1 + 2 ч. Nano) 1 ч. (25% масс.) 2 ч. nano GCC
(50% масс.)
3 ч.
(75% масс.)
3 (образец 1 + 2 ч. HO-ME (дисперсия)) 1 ч. (25% масс.) 2 ч. HO-ME
(50% масс.)
3 ч.
(75% масс.)

Гель образца 1 смешивают с соответствующим количеством дополнительного ИКК (GCC), как указано в таблице 2, и смешивают вручную шпателем.

Затем рецептуры загружают в небольшой фильтр-пресс (фильтровальная бумага от Whatman Schleider & Schuel, 598/2, белая лента, фильтр-пресс: фильтр-пресс с вентиляцией, серия 3000, компания по вентиляции - Houston Texas, США) в таком количестве, что получают конечную толщину образца около 3 мм (рассчитанную по плотности). Диск из полиметилметакрилата (толщина 10 мм, диаметр 78 мм (подходит под внутренний диаметр фильтр-пресса)) помещают сверху на рецептуру, который снова покрывают дополнительным материалом той же рецептуры (уже присутствует около 10-20% мас. количества рецептуры).

Фильтр-пресс затем закрывают и используют следующий профиль изменения давления:

15 мин при 1 бар (100 кПа),

120 мин при 4 бар (400 кПа),

45 мин при 6 бар (600 кПа).

Затем «полусухой» диск (содержание сухого вещества: примерно 50% мас.) вынимают из фильтр-пресса и режут на пять одинаковых прямоугольников (40 мм×10 мм). Указанные прямоугольники помещают между двумя листами фильтровальной бумаги и двумя алюминиевыми пластинами, нагруженными стальными шарами (около 300 г), и сушат в печи при температуре примерно 80°C до утра.

Источник поступления информации: Роспатент

Всего документов: 42
Всего документов: 30

Похожие РИД в системе



Похожие не найдены



Защитите авторские права с едрид