×
27.10.2015
216.013.88f8

Результат интеллектуальной деятельности: СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Вид РИД

Изобретение

Аннотация: Использование: в области электроэнергетики. Технический результат - повышение точности определения момента включения выключателя и автоматический контроль идентичности чередования фаз двух электроэнергетических систем. Процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt≤≤T. Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока. 3 ил.
Основные результаты: Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы.

Известен способ синхронизации возбужденной синхронной машины с сетью (Константинов В.Н. Синхронизация судовых синхронных генераторов. - Л.: «Судостроение», 1965. - с. 256-267), заключающийся в том, что регулируют частоту возбужденной синхронной машины до совпадения частот машины и сети, ожидают момент совпадения фаз машины и сети и включают машину в сеть в момент совпадения фаз.

Недостатком известного способа является большая длительность синхронизации синхронной машины из-за длительности подготовки частоты и большого периода между моментами возникновения условий, допускающих включение возбужденной машины в сеть.

Известен способ синхронизации возбужденной синхронной машины с сетью (а.с. СССР 598179, H02J 3/42, 1967), заключающийся в том, что при развороте синхронной машины от нулевой частоты вращения путем фиксации действительного скольжения сравнивают его с заданным значением и, в зависимости от величины и знака полученной разности, воздействуют на изменение частоты вращения, причем заданное значение скольжения выбирают большим зоны нечувствительности регулятора скорости и меньшим половины допустимого значения скольжения по условию успешной синхронизации.

Недостатками известного способа являются трудность задания значения скольжения и большая длительность синхронизации синхронной машины из-за длительности подгонки частоты вращения синхронной машины.

Известен способ синхронизации возбужденной синхронной машины с сетью (патент РФ 2190917, МПК 7, H02J 3/42, опубл. 10.10.2002), выбранный в качестве прототипа, заключающийся в том, что регулируют частоту напряжения возбужденной синхронной машины в направлении сближения с частотой сети, измеряют разность фаз и включают возбужденную синхронную машину в сеть в момент совпадения фаз. При этом при частоте напряжения возбужденной синхронной машины ниже частоты сети увеличивают частоту возбужденной машины до уровня, большего, чем частота сети, а измерение разности фаз начинают, когда частота напряжения возбужденной синхронной машины станет больше частоты сети.

Основным недостатком известного способа является исключение операции точной подгонки частоты машины, а также необходимость ожидания момента совпадения фаз. При этом для синхронизации используется напряжение одной фазы трехфазного напряжения, что приводит к неконтролируемым толчкам тока по оставшимся двум фазам при включении выключателя, который соединяет две трехфазные электроэнергетические системы.

Технической задачей, решаемой изобретением, является улучшение параметров синхронизации двух трехфазных электроэнергетических систем увеличение, а именно повышение точности определения момента включения выключателя, включение выключателя с наименьшим суммарным по всем трем фазам толчком тока и автоматический контроль идентичности чередования фаз двух электроэнергетических систем.

Технический результат, заключающийся в повышении точности определения момента включения выключателя, достигается благодаря тому, что в способе синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dUmax, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T, исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем, согласно изобретению определяют проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения:

определяют проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяют модули вращающихся полей U1(ti), U2(ti):

определяют фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-1,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-1,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc),

определяют средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

и при выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Существенным отличием предлагаемого технического решения является то, что весь процесс точной синхронизации двух трехфазных электроэнергетических систем производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Предлагаемый способ синхронизации двух трехфазных электроэнергетических систем поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В (2), С (3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3, создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Υ (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси Х(10), Υ (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем. Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период Τ частоты F=1/T.

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Υ (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y)

Весь процесс предлагаемого способа точной синхронизации производится в цифровом виде, используя выходные цифровые сигналы АЦП всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<<T.

Исходя из цифровых сигналов всех трех фаз промышленного трехфазного напряжения двух систем определяют амплитуды напряжения первой Ua1, Ub1, Uc1 и второй Ua2, Ub2, Uc2 электроэнергетических систем. В каждый момент времени ti определяются проекции Ux1(ti), Ux2(ti) на ось абсцисс X вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, по формуле:

определяются проекции Uy1(ti), Uy2(ti) на ось абсцисс Υ вращающихся полей U1(ti), U2(ti):

Uy1(ti)=(2·Ua1(ti)-Ub1(ti)-Uc1(ti))/2, Uy2(ti)=(2·Ua2(ti)-Ub2(ti)-Uc2(ti))/2,

определяются модули вращающихся полей U1(ti), U2(ti):

определяются фазы φi1, φi2 вращающихся полей U1(ti), U2(ti):

φi1=k1·2π+k2·arccos{Ux1(ti)/U1(ti)}, φi2=k3·2π+k4·arccos{Ux2(ti)/U2(ti)},

где k1=0, k2=1 если Uy1(ti)≥0, иначе k1=1, k2=-l,

k3=0, k4=1 если Uy2(ti)≥0, иначе k3=1, k4=-l,

определяют модуль угла φi между двумя вращающимися полями U1(ti), U2(ti):

|φi|=|φi1-φi2|,

определяют ближайший угол αi между двумя вращающимися полями U1(ti), U2(ti):

αi=|φi|, если |φi|≤π, иначе αi=2π-|φi|,

определяют разность dωi частот вращения вращающихся полей U1(ti), U2(ti):

dωi=|[α(i+1)-αi]/dt|

определяют разности dUa, dUb, dUc амплитуд всех трех фаз двух систем:

dUa=|Ua1-Ua2|, dUb=|Ub1-Ub2|, dUc=|Uc1-Uc2|,

определяют максимальное значение dU разности амплитуд среди всех трех фаз двух систем:

dU = максимальное значение из (dUa, dUb, dUc).

Для повышения точности измерений угла α и разности частот dω определяются средние за интервал времени n·dt значения ближайшего угла α и разности частот dω между двумя вращающимися полями U1(ti), U2(ti):

где n - целое значение.

Исходными значениями для предлагаемого способа точной синхронизации двух трехфазных электроэнергетических систем являются заданное значение максимальной разности частот dωmax, заданное значение максимальной разности амплитуд dUmax и заданное значение времени включения выключателя Твкл.

При выполнении обоих условий dω≤dωmax и dU≤dUmax подают команду включения выключателя, который соединяет две трехфазные электроэнергетические системы, в момент смены знака выражения (α-αmax) с положительного на отрицательный, где αmax=dω·Твкл.

Использование всех трех фаз напряжения (Ua, Ub, Uc) двух электроэнергетических систем (вместо использования одной фазы напряжения) приводит к значительному улучшению параметров синхронизации двух трехфазных электроэнергетических систем:

1. Большее число сигналов (напряжения трех фаз) приводит к увеличению точности определения момента включения выключателя.

2. Использование вращающихся полей U1(ti), U2(ti), создаваемых тремя фазами Ua1(ti), Ub1(ti), Uc1(ti) и Ua2(ti), Ub2(ti), Uc2(ti) промышленного трехфазного напряжения, позволяет учитывать разность фаз между всеми тремя парами фаз напряжений (Ua1 и Ua2, Ub1 и Ub2, Uc1 и Uc2), в результате включение выключателя происходит с наименьшим суммарным по всем трем фазам толчком тока.

3. Автоматически контролируется идентичность чередования фаз двух электроэнергетических систем, поскольку при разном чередовании фаз одна фаза двух систем может быть синхронизована (и может быть неправильное включение при использовании только одной фазы), но вращающиеся поля U1(ti), U2(ti) будут вращаться в разных направлениях, и синхронизация никогда не наступит.

Таким образом, предлагаемый способ синхронизации двух трехфазных электроэнергетических систем позволяет увеличить точность определения момента включения выключателя, который соединяет две трехфазные электроэнергетические системы, включать выключатель с наименьшим суммарным по всем трем фазам толчком тока, автоматически контролировать идентичность чередования фаз двух электроэнергетических систем.

Способ синхронизации двух трехфазных электроэнергетических систем, в котором измеряют разность фаз между двумя трехфазными электроэнергетическими системами, для определения момента подачи команды включения выключателя, который соединяет две трехфазные электроэнергетические системы при разности частот двух систем меньше, чем заданное значение максимальной разности частот dωmax, и при разности амплитуд напряжений двух систем меньше, чем заданное значение максимальной разности амплитуд dU, и заданном значении времени включения выключателя Твкл используют цифровые сигналы всех трех фаз промышленного трехфазного напряжения первой Ua1(ti), Ub1(ti), Uc1(ti) и второй Ua2(ti), Ub2(ti), Uc2(ti) электроэнергетических систем, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=t(i+1)-ti, причем величина dt значительно меньше периода Τ промышленного трехфазного напряжения, dt<СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
СПОСОБ СИНХРОНИЗАЦИИ ДВУХ ТРЕХФАЗНЫХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 166.
27.10.2014
№216.013.01ea

Электрический чайник

Изобретение относится к кухонной посуде для кипячения воды, а именно к чайникам. Электрический чайник содержит корпус, нагревательный элемент, соединенный с блоком управления. В него введен сосуд с двойными стенками и вакуумом между ними, а также отражатель, при этом указанный сосуд является...
Тип: Изобретение
Номер охранного документа: 0002531888
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0be8

Метеодатчик системы контроля температуры

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью...
Тип: Изобретение
Номер охранного документа: 0002534456
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d08

Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием...
Тип: Изобретение
Номер охранного документа: 0002534753
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fd2

Адаптивное цифровое дифференцирующее и прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности прогноза на этапе восстановления заданного времени прогноза после завершения...
Тип: Изобретение
Номер охранного документа: 0002535467
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1740

Способ обнаружения гололеда на проводах воздушных линий электропередачи

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат - расширение функциональных возможностей. Способ включает передачу от начала линии до конца линии электропередачи высокочастотного сигнала и контроль параметров,...
Тип: Изобретение
Номер охранного документа: 0002537380
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2b62

Способ работы теплового пункта

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов. Способе работы теплового пункта, согласно которому холодная...
Тип: Изобретение
Номер охранного документа: 0002542563
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b84

Способ контроля качества проводов воздушной линии электропередачи

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля качества проводов воздушной линии электропередачи. Измеряют напряжение и ток в первом и втором местоположениях на линии электропередачи. При этом измеренные напряжения и токи в первом и втором...
Тип: Изобретение
Номер охранного документа: 0002542597
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2fcf

Способ измерения постоянной гравитации

Изобретение относится к области гравиметрии и может быть использовано для измерений постоянной гравитации γ. В указанном способе процесс измерения начинается после окончания вывешивания шаров с известной массой и удаления держателя, когда шары начинают свободное движение в поле тяготения данных...
Тип: Изобретение
Номер охранного документа: 0002543707
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3067

Способ очистки загрязненного воздуха

Изобретение относится к области вентиляции промышленных объектов и может быть использовано для очистки воздуха от газообразных и аэрозольных вредных веществ. В способе очистки загрязненного воздуха, заключающемся в отсосе загрязненного воздуха через один или несколько воздухоприемников,...
Тип: Изобретение
Номер охранного документа: 0002543859
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3255

Устройство для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР)...
Тип: Изобретение
Номер охранного документа: 0002544360
Дата охранного документа: 20.03.2015
Показаны записи 41-50 из 184.
27.05.2014
№216.012.c964

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых системах контроля и наведения различных объектов. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002517322
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc9d

Ветроэлектрогенератор

Изобретение относится к области электромашиностроения, а именно к магнитоэлектрическим генераторам, использующим для вращения ротора энергию воздушного потока. Техническим результатом является сохранение выработки электроэнергии при малых и больших скоростях ветра, а также при повышенных...
Тип: Изобретение
Номер охранного документа: 0002518152
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dc

Способ измерения электропроводности раствора электролита

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в...
Тип: Изобретение
Номер охранного документа: 0002519495
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dd

Способ оперативного контроля качества нефти и нефтепродуктов

Использование: для оперативного контроля качества нефти и нефтепродуктов. Сущность изобретения заключается в том, что выполняют возбуждение в образце, помещенном в постоянное магнитное поле, сигналов спин-эхо протонного магнитного резонанса (ПМР) сериями радиочастотных импульсов, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002519496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1df

Счетчик активной энергии переменного тока

Изобретение относится к устройствам для учета потребляемой из электросети активной электрической энергии. Cчетчик переменного тока содержит провода электросети и провода нагрузки, а также электрически связанные между собой трансформатор, датчик тока, датчик напряжения, преобразователь мощности...
Тип: Изобретение
Номер охранного документа: 0002519498
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
+ добавить свой РИД