×
27.10.2015
216.013.88e3

Результат интеллектуальной деятельности: ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО

Вид РИД

Изобретение

Аннотация: Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы. Лабораторная установка для определения нагрузки, действующей на буровое долото, содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом. На измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии a, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат. Техническим результатом изобретения является повышение точности измерений. 8 ил.
Основные результаты: Лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения R монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и Н, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы.

В лаборатории механики долота ВНИИБТ были разработаны методика и комплекс устройств и средств измерения для экспериментального определения нагрузок, воспринимаемых каждой шарошкой (секцией) во время их работы на забое [Комм Э.Л., Перлов Г.Ф., Мокшин А.С. Исследование нагруженности секций шарошечного долота / Э.Л. Комм, Г.Ф. Перлов, А.С. Мокшин // Тр. ВНИИБТ. - 1976. - №36. - С. 27-36]. Авторы полагали, что плоскость действия главного вектора системы сил, действующих на шарошку со стороны породы, проходит через ось цапфы и совпадает с плоскостью, в которой действует главный момент, то есть система сил имеет равнодействующую. Таким образом, задача упрощается и сводится к нахождению трех составляющих главного вектора и абсолютного значения главного момента. Сделанные авторами при разработке этой методики существенные допущения уменьшают достоверность определяемого силового воздействия на шарошку. Необходимо отметить, что вектор профиля износа, наблюдаемого по окружностям подшипников шарошек, имеет значительный угол раствора, доходящий до 90°. Это может быть объяснено несовпадением плоскости действия главного вектора с плоскостью действия главного момента системы сил, действующих на шарошку со стороны разрушаемой породы, и изменением силового воздействия на шарошку ("игра сил") в процессе ее работы на забое.

Известно автономное забойное устройство [RU 2131974 C1, МПК6 E21B 45, опубл. 1999] для измерения силовых параметров в колонне бурильных труб, в том числе и над долотом, таких как осевая нагрузка, поперечные силы и крутящий момент. Для этого устройство содержит встроенный в колонну бурильных труб упругий элемент, на внутренней поверхности стенки которого расположены датчики измерения деформаций.

Недостатком известного устройства является неполная информация о системе сил, действующих на долото. Определяя осевую нагрузку, поперечные силы и крутящий момент, действующие на долото, авторы изобретения тоже предполагали, что система сил, действующих на долото со стороны разрушаемой породы, может быть приведена к равнодействующей и крутящему моменту.

Наиболее близким техническим решением, принятым за прототип [RU 2190199 C1, МПК7 G01L 1/04, G01L 1/22, опубл. 27.09.2002], является датчик вектора силы, содержащий корпус, помещенный в него цилиндрический упругий элемент диаметром d с размещенными на нем тензорезисторными мостами для измерения осевой и поперечных составляющих вектора силы. Упругий элемент содержит силоопорную и силовоспринимающую части. Два тензорезисторных моста измерения осевой составляющей вектора силы размещены в поперечном сечении упругого элемента со смещением относительно друг друга на 90°. Два тензорезисторных моста измерения поперечной составляющей вектора размещены в этом же сечении также со смещением на угол 90° относительно друг друга. Кроме того, с целью повышения точности измерения осевой составляющей вектора силы и определения точки его приложения, тензорезисторный датчик вектора силы снабжен двумя дополнительными тензорезисторными мостами измерения поперечной составляющей вектора силы, размещенными в дополнительном сечении на расстоянии (0,8-0,9)d от мостов первого сечения в направлении силоопорной поверхности и имеющими топологию наклейки аналогичных тензомостов в первом сечении.

Недостатком известного датчика является измерение только вектора силы и определение точки ее приложения (эксцентриситета) относительно оси датчика, т.е. неполная информация о системе сил, действующих на датчик.

Задачей заявляемого изобретения является разработка лабораторной установки, обеспечивающей высокоточное и надежное определение нагруженности долота с учетом того, что данная пространственная система сил может быть приведена к эквивалентной системе, состоящей из одной силы, приложенной к какой-либо точке долота (центр приведения), и равной главному вектору данной системы сил, и одной пары, момент которой равен главному моменту этих сил относительно выбранного центра приведения.

При осуществлении изобретения поставленная задача решается за счет достижения технического результата, который заключается в повышении достоверности измерений, измерения не только осевой нагрузки и крутящего момента, но и - поперечных сил, а также изгибающих моментов, действующих на долото, т.е. изобретение дает возможность определения относительно выбранного центра приведения главного вектора и главного момента пространственной системы сил, действующих на долото в процессе бурения с обращенным забоем.

Указанный технический результата достигается тем, что лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки Rza на измерительную балку вдоль ее оси, Mza - момента, скручивающего измерительную балку относительно ее оси, Mxa, Mxb - моментов, соответственно, в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, Mya, Myb - моментов, соответственно, в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения Mza монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения Rza монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения Mya монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика 20 и 21 установлены вдоль образующих, а два датчика 22 и 23 развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения Mxa монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения Myb монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и H, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения Mxb монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.

Именно заявляемое расположение тензометрических датчиков на измерительной балке и схемы расположения датчиков обеспечивают возможность измерения, высокоточное и надежное определение нагруженности долота.

На фиг. 1 представлена схематично лабораторная установка, на фиг. 2 - схемы размещения тензодатчиков, на фиг. 3 - 8 представлены схемы тензометрических мостов для измерения, соответственно, Mza, Rza, Mya, Mxa, Myb и Mxb.

Основу лабораторной установки, способной работать при бурении с обращенным забоем (фиг. 1), составляет измерительная балка 1, жестко закрепленная на базовой плите 2, с установленным на ней долотом 3. На измерительной балке монтируют тензометрические датчики, образующие шесть тензометрических мостов (фиг. 3 - 8) для измерения осевой нагрузки Rza на измерительную балку вдоль оси ОО, Mza - момента, скручивающего измерительную балку относительно оси ОО, Mxa, Mxb - моментов (соответственно в поперечных сечениях измерительной балки A и B, отстоящих друг от друга на расстоянии а), изгибающих измерительную балку в плоскости, проходящей через ее ось ОО, и ось Ya декартовой системы координат XaYaZa, Mya, Myb - моментов (соответственно в поперечных сечениях измерительной балки A и B), изгибающих измерительную балку в плоскости, проходящей через ее ось ОО, и ось Xa декартовой системы координат XaYaZa.

Схемы размещения и соединения тензодатчиков (фиг. 2) выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий.

Тензодатчики 4-11 для измерения Mza монтируют на теле измерительной балки 1 в ее поперечном сечении C, находящемся посредине между сечениями A и B, на образующих D, E, F, G, H, I, J, K, расположенных друг от друга со смещением на 45°, причем датчики 4, 5, 8 и 9 развернуты относительно образующих, соответственно D, Н, F и J, на угол 45° в направлении против хода часовой стрелки, а датчики 6, 7, 10 и 11 развернуты относительно своих образующих на угол 45° в направлении по ходу часовой стрелки. Схема тензометрического моста для измерения Mza представлена на фиг. 3, где 10v - опорное напряжение 10 вольт.

Тензодатчики 12-19 для измерения Rza монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих E, G, I, K, расположенных друг от друга со смещением на 90°, причем датчики 12, 13, 16 и 17 установлены вдоль образующих, соответственно Ε, I, G и K, а датчики 14, 15, 18 и 19 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Rza представлена на фиг. 4.

Тензодатчики 20-23 для измерения Mya монтируют на теле измерительной балки 1 в ее поперечном сечении A на образующих D и Н, расположенных друг от друга со смещением на 180°, причем датчики 20 и 21 установлены вдоль образующих, соответственно D и Н, а датчики 22 и 23 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mya представлена на фиг. 5.

Тензодатчики 24-27 для измерения Mxa монтируют на теле измерительной балки 1 в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, причем датчики 24 и 25 установлены вдоль образующих, соответственно F и J, а датчики 26 и 27 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mxa представлена на фиг. 6.

Тензодатчики 28-31 для измерения Myb монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих D и H, расположенных друг от друга со смещением на 180°, причем датчики 28 и 29 установлены вдоль образующих, соответственно D и H, а датчики 30 и 31 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Myb представлена на фиг. 7.

Тензодатчики 32-35 для измерения Mxb монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих F и J, расположенных друг от друга со смещением на 180°, причем датчики 32 и 33 установлены вдоль образующих, соответственно F и J, а датчики 34 и 35 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mxb представлена на фиг. 8.

Пространственную систему сил, действующих на долото 3 в процессе бурения с обращенным забоем, определяют относительно выбранного центра приведения точки C (фиг. 1) на оси долота 3 (измерительной балки 1), отстоящей от плоскости A на расстоянии lc, в два раза превышающем расстояние а между плоскостями A и B (фиг. 1), в виде главного вектора и главного момента в проекциях на оси координат декартовой системы XcYcZc:

В формулах (1)…(6) единицы измерения следующие:

Rza - H; Mza, Mya, Mxa, Myb, Mxb, Mzc - H*м; a, lc - м.

Таким образом, выражения (1)…(6) определяют главный вектор и главный момент системы сил, действующих на долото 3 со стороны разрушаемой породы, относительно точки C, выбранной за центр приведения.

Эксперименты по определению нагруженности долота выполнялись на буровом стенде ЗИФ-1200 на различных режимах при разбуривании известняка. В процессе разбуривания известняка долото было углублено в забой не менее чем на 30 мм, что обеспечивало полное формирование скважины, а следовательно, и нормальную работу периферийного и затылочного венцов долота. Вращающийся забой находился над долотом, что обеспечивало очистку забоя без дополнительного воздействия (промывки, продувки). Кроме измеряемых с помощью тензометрических мостов параметров усилий и моментов стенд позволяет определить нагрузку на долото, крутящий момент, частоту вращения забоя, а также - механическую скорость бурения. Эксперименты проводились на следующих режимах: частота вращения забоя - 67 об/мин; нагрузка на долото - 40000 Н. В ходе проведения и обработки результатов эксперимента в один из фиксированных моментов времени были получены следующие значения величин:

Mza=3800 Н*м;

Mya=285 Н*м;

Mxa=276 Н*м;

Myb=356 Н*м;

Mxb=242 Н*м;

Rza=37600 Η.

Конструктивно размеры равны a=0,1 м, b=0,2 м. Тогда по формулам (1)…(6) получается:

;

;

Rzc=Rza=37600 H;

;

;

Mzc=Mza=3800 H*м.

Лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения R монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и Н, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
Источник поступления информации: Роспатент

Показаны записи 1-10 из 28.
27.01.2014
№216.012.9afa

Способ тарирования естественной термопары в процессе врезания

Способ включает осуществление процесса резания на интересующих режимах с одновременной регистрацией величины термо-ЭДС, образующейся в результате взаимодействия материалов инструмента и заготовки, соотнесение значения температуры в зоне контакта со значением термо-ЭДС и построение по полученным...
Тип: Изобретение
Номер охранного документа: 0002505380
Дата охранного документа: 27.01.2014
27.04.2014
№216.012.bdf5

Способ тарирования естественной термопары

Способ включает осуществление процесса резания с одновременной регистрацией величины термоЭДС, образующейся в результате взаимодействия материалов режущего инструмента и заготовки, определение значений температуры в зоне контакта и соотнесение ее со значением термоЭДС, изменение параметров...
Тип: Изобретение
Номер охранного документа: 0002514369
Дата охранного документа: 27.04.2014
20.06.2014
№216.012.d4f8

Устройство для тарирования естественной термопары

Устройство содержит образец детали, установленный на оправке, и резец, изолированные от зажимных элементов станка и резцедержателя. При этом образец детали и режущая часть резца электрически соединены через токосъемник и измерительный прибор для регистрации термо-ЭДС. Для повышения точности...
Тип: Изобретение
Номер охранного документа: 0002520291
Дата охранного документа: 20.06.2014
10.10.2015
№216.013.8153

Способ изоляции притока подошвенных вод в скважине

Изобретение относится к нефтедобывающей промышленности, а именно к изоляции притока пластовых вод в скважине, забой которой расположен вблизи водонефтяного контакта (ВНК). Технический результат от реализации изобретения заключается в увеличении радиуса водоизоляционного экрана и отсрочки...
Тип: Изобретение
Номер охранного документа: 0002564704
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82e5

Способ диагностики герметичности магистрального трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано для обнаружения негерметичности стенки трубы линейного участка магистрального трубопровода. В качестве передающего канала информации используют как металл стенки трубы, так и среду, заполняющую трубу. Регистрируют...
Тип: Изобретение
Номер охранного документа: 0002565112
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8502

Система поддержания теплового режима гидропривода строительной машины с помощью теплоаккумулирующего вещества

Система относится к области машиностроения, а именно к эксплуатации строительной и дорожной техники, оснащенной объемным гидроприводом в зимний период. Система представляет собой гидроцилиндр с полым штоком, наполненным теплоаккумулирующим материалом, при этом гидроцилиндр покрыт слоями...
Тип: Изобретение
Номер охранного документа: 0002565653
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87b6

Способ гидравлического разрыва пласта с изоляцией водопритока в добывающих скважинах

Изобретение относится к нефтегазодобывающей промышленности, в частности к гидравлическому разрыву пласта. Способ гидравлического разрыва пласта с изоляцией водопритока в добывающих скважинах характеризуется тем, что в горизонтальный участок скважины производят спуск колонны...
Тип: Изобретение
Номер охранного документа: 0002566345
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d90

Двухрежимный электростартер

Изобретение относится к системам запуска ДВЗ. Технический результат - повышение эксплуатационных характеристик стартера. Использование: системы запуска двигателей НТС (наземные транспортные системы): автомобили, тракторы и т.д. Задача: расширение эксплуатационных характеристик двигателей НТС за...
Тип: Изобретение
Номер охранного документа: 0002567847
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8deb

Способ определения температуры максимальной работоспособности твердосплавных режущих пластин

Способ включает построение графика температурной зависимости структурно-чувствительной характеристики пластин по результатам кратковременных испытаний в диапазоне от 400 до 1000°С и определение на нем характерного участка, соответствующего интервалу температур максимальной работоспособности....
Тип: Изобретение
Номер охранного документа: 0002567938
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9563

Система прогрева элементов гидропривода

Изобретение относится к машиностроению, а именно к гидроприводу машин, работающих в полевых условиях, в частности к элементам гидропривода. Система тепловой подготовки элементов гидропривода содержит двигатель внутреннего сгорания (ДВС) 1, систему охлаждения ДВС, включающую трубопроводы 2, 3,...
Тип: Изобретение
Номер охранного документа: 0002569862
Дата охранного документа: 27.11.2015
Показаны записи 1-10 из 33.
27.01.2014
№216.012.9afa

Способ тарирования естественной термопары в процессе врезания

Способ включает осуществление процесса резания на интересующих режимах с одновременной регистрацией величины термо-ЭДС, образующейся в результате взаимодействия материалов инструмента и заготовки, соотнесение значения температуры в зоне контакта со значением термо-ЭДС и построение по полученным...
Тип: Изобретение
Номер охранного документа: 0002505380
Дата охранного документа: 27.01.2014
27.04.2014
№216.012.bdf5

Способ тарирования естественной термопары

Способ включает осуществление процесса резания с одновременной регистрацией величины термоЭДС, образующейся в результате взаимодействия материалов режущего инструмента и заготовки, определение значений температуры в зоне контакта и соотнесение ее со значением термоЭДС, изменение параметров...
Тип: Изобретение
Номер охранного документа: 0002514369
Дата охранного документа: 27.04.2014
20.06.2014
№216.012.d4f8

Устройство для тарирования естественной термопары

Устройство содержит образец детали, установленный на оправке, и резец, изолированные от зажимных элементов станка и резцедержателя. При этом образец детали и режущая часть резца электрически соединены через токосъемник и измерительный прибор для регистрации термо-ЭДС. Для повышения точности...
Тип: Изобретение
Номер охранного документа: 0002520291
Дата охранного документа: 20.06.2014
10.10.2015
№216.013.8153

Способ изоляции притока подошвенных вод в скважине

Изобретение относится к нефтедобывающей промышленности, а именно к изоляции притока пластовых вод в скважине, забой которой расположен вблизи водонефтяного контакта (ВНК). Технический результат от реализации изобретения заключается в увеличении радиуса водоизоляционного экрана и отсрочки...
Тип: Изобретение
Номер охранного документа: 0002564704
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82e5

Способ диагностики герметичности магистрального трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано для обнаружения негерметичности стенки трубы линейного участка магистрального трубопровода. В качестве передающего канала информации используют как металл стенки трубы, так и среду, заполняющую трубу. Регистрируют...
Тип: Изобретение
Номер охранного документа: 0002565112
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8502

Система поддержания теплового режима гидропривода строительной машины с помощью теплоаккумулирующего вещества

Система относится к области машиностроения, а именно к эксплуатации строительной и дорожной техники, оснащенной объемным гидроприводом в зимний период. Система представляет собой гидроцилиндр с полым штоком, наполненным теплоаккумулирующим материалом, при этом гидроцилиндр покрыт слоями...
Тип: Изобретение
Номер охранного документа: 0002565653
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87b6

Способ гидравлического разрыва пласта с изоляцией водопритока в добывающих скважинах

Изобретение относится к нефтегазодобывающей промышленности, в частности к гидравлическому разрыву пласта. Способ гидравлического разрыва пласта с изоляцией водопритока в добывающих скважинах характеризуется тем, что в горизонтальный участок скважины производят спуск колонны...
Тип: Изобретение
Номер охранного документа: 0002566345
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d90

Двухрежимный электростартер

Изобретение относится к системам запуска ДВЗ. Технический результат - повышение эксплуатационных характеристик стартера. Использование: системы запуска двигателей НТС (наземные транспортные системы): автомобили, тракторы и т.д. Задача: расширение эксплуатационных характеристик двигателей НТС за...
Тип: Изобретение
Номер охранного документа: 0002567847
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8deb

Способ определения температуры максимальной работоспособности твердосплавных режущих пластин

Способ включает построение графика температурной зависимости структурно-чувствительной характеристики пластин по результатам кратковременных испытаний в диапазоне от 400 до 1000°С и определение на нем характерного участка, соответствующего интервалу температур максимальной работоспособности....
Тип: Изобретение
Номер охранного документа: 0002567938
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9563

Система прогрева элементов гидропривода

Изобретение относится к машиностроению, а именно к гидроприводу машин, работающих в полевых условиях, в частности к элементам гидропривода. Система тепловой подготовки элементов гидропривода содержит двигатель внутреннего сгорания (ДВС) 1, систему охлаждения ДВС, включающую трубопроводы 2, 3,...
Тип: Изобретение
Номер охранного документа: 0002569862
Дата охранного документа: 27.11.2015
+ добавить свой РИД