×
20.10.2015
216.013.86f2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНОВОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную механоактивацию наномодификатора с последующим введением его в гидроксилсодержащий полиэфир под воздействием ультразвука в количестве 0,5-3,0% относительно веса получаемого нанокомпозита, перемешивание и введение отвердителя. В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия. Способ позволяет улучшить механические свойства материала и повысить его температуру возгорания. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к производству конструкционных материалов, в частности к полимерным композитам, которые включают полимер и неорганическую добавку.

Конструкционные материалы на основе пенополиуретанов представляют существенный интерес для многих видов промышленного и энергетического строительства, а также для судостроения, авиастроения и автомобильной промышленности; этот интерес обусловлен тем, что такие материалы обладают высокими теплоизоляционными свойствами, значительной химической стойкостью по отношению к окружающей среде (атмосфере и, в ряде случаев, водной среде), а также существенными звукоизолирующими свойствами. Использование таких материалов позволяет наиболее экономично обеспечить требуемую теплоизоляцию конструкций. Особое внимание привлекают теплоизоляционные свойства таких материалов при низких температурах, что связано с активно развивающейся отраслью судостроения: проектированием и строительством судов-газоходов, предназначенных для перевозки сжиженных газов.

Основы методик производства теплоизоляционных материалов на основе вспененных полиуретанов изложены, например, в работе Г.А. Булатова «Пенополиуретаны в машиностроении и строительстве». - М: Машиностроение, 1978, с. 12, 19, и 25.

Однако основными недостатками таких материалов, препятствующими их применению в широком спектре задач, являются недостаточные прочностные свойства получаемых конструкционных материалов, и, в ряде случаев, высокая горючесть материалов.

Одним из способов преодоления этих недостатков является введение в матрицу вспененного полиуретана неорганических добавок, обладающих достаточной прочностью, например, речного песка, бетона, углерода, а также добавка в состав гипсовых или цементных вяжущих.

Наиболее близким к заявляемому изобретению является полимерный нанокомпозит и способ его получения (патент RU №2414492, МПК C08L 63/10, B82B 1/00, C09K 21/02, опубл. 20.03.2011) - прототип.

Данный композит содержит эпоксидную смолу, отвердитель и наполнитель - стеклосферы и наномодификатор. В данном изобретении наномодификатором является оксид алюминия и оксид циркония и/или оксид иттрия, изготовленный методом золь-гель синтеза, в варианте обратного соосаждения гидроксидов алюминия и циркония и/или иттрия. Композит получали перемешиванием эпоксидной смолы и наномодификатора, введением отвердителя и постепенным введением стеклосфер.

Недостатками полученного указанным способом полимерного нанокомпозита являются недостаточно высокая механическая прочность, особенно при отрицательных температурах.

Техническим результатом является повышение прочностных характеристик конструкционного материала на основе вспененного полиуретана при сохранении высоких показателей огнестойкости.

Технический результат достигается тем, что в способе получения пенополиуретанового нанокомпозита, включающем введение наномодификатора на основе неорганических оксидных соединений в виде высушенного порошка гидроксилсодержащий полиэфир, перемешивание и введение отвердителя, согласно изобретению, порошок наномодификатора предварительно механоактивируют ультразвуком, а в качестве наномодификатора используют диоксид циркония стабилизированного оксидом иттрия или оксидом алюминия, в количестве 0,5-3,0 мас. % относительно массы получаемого нанокомпозита.

В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия.

Процесс механоактивации приводит к изменению структуры поверхностного слоя частиц наномодификатора, за счет чего обеспечивается гомогенность материала, которая, в свою очередь, во многом определяет его прочностные и огнестойкие свойства.

Улучшение механических свойств пластиков при введении в них наполнителей связан с интегральной величиной поверхности частиц наполнителя, которая тем выше, чем больше количество малоразмерных частиц. Иными словами, агломерация нескольких наноразмерных частиц в одну размерами в сотни микрон в разы понижает интегральную поверхность частиц наполнителя, снижая тем самым положительный эффект его введения. Задачей настоящей работы является достижение как можно более равномерного распределения частиц наномодификатора в объеме матрицы пластика. Очевидно, что такая задача тоже требует присутствия как можно большего количества частиц модификатора, следовательно, с этой точки зрения, наличие наноразмерных частиц предпочтительнее, чем присутствие их агломератов. Кроме того, реакционноспособность наночастиц также отчетливо возрастает с уменьшением их размеров, при приближении размера к характерному для макрообразований (сотни нанометров), качественно новые эффекты нанохимии практически отсутствуют. Исходя из вышеизложенного, устранение агломерации наночастиц на этапе введения их в матрицу пластика под воздействием ультразвука является существенным и в значительной степени определяет положительный эффект влияния введения наномодификатора.

Способ изготовления пенополиуретанового нанокомпозита состоит в следующем. Материал на основе пенополиуретана включает в себя гидроксилсодержащий полиэфир - компонент А и отвердитель - компонент Б (в соотношении А:Б=1:1-1:1,5). В качестве наполнителя в матрицу пенополиуретана вводят механоактивированный наномодификатор, представляющий собой наноразмерный стабилизированный оксидом иттрия или оксидом алюминия диоксид циркония, количество которого может варьироваться от 0,5% до 3,0% относительно веса получаемого нанокомпозита.

Наномодификатор готовят методом золь-гель синтеза в варианте обратного соосаждения.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация (один из режимов помола может быть осуществлен, например, с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов).

Полученный в результате порошок подвергался воздействию ультразвуком с целью разрушения агломератов. Произведенный таким образом наномодификатор имел флюоритоподобную кубическую структуру, большая часть частиц порошка имела характерный размер менее 300 нанометров (90% частиц), при этом средний размер частиц составлял порядка 200 нанометров.

Схематично, химическую реакцию образования пенополиуретана из вышеуказанных компонентов можно представить следующим образом:

Механоактивированный порошок-наномодификатор смешивают небольшими порциями с частью компонента А под воздействием ультразвука и тщательно перемешивают.

Полученную суспензию вводят в основную массу компонента А под воздействием ультразвука. После смешивания всех компонентов под высоким давлением (порядка 100-115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки, полученную массу равномерно распределяют на гладкой подготовленной поверхности заданного размера (пресс-форме) с помощью набора форсунок и оставляют для затвердевания под прессом.

Пример 1.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27, для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом иттрия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Сушка геля проводилась между двумя гладкими стеклянными поверхностями при температуре 110°C под давлением порядка 2 кг/см2 в течение 10 минут, после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан следующим образом: в емкости 0,5-0,55 литра, содержащие компонент А, небольшими порциями вводили 108 г наномодификатора, стабилизированного оксидом иттрия, и параллельно в аналогичные емкости 0,5-0,55 литра, содержащие компонент А, вводили 108 г наномодификатора, стабилизированного оксидом алюминия, что соответствовало в каждом случае по 0,5 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадь сечения 0,196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Пример 2.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27 для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом алюминия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Применяли лиофильную сушку геля (например, на установке Labconco производства США), после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде - нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан в три отдельные емкости объемом 0,7 литра, отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г. при постоянном перемешивании вводили в каждый объем 216 г, при этом суммарная масса из трех емкостей составляла 648 г и параллельно в три такие же емкости объемом 0,7 литра отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г при постоянном перемешивании вводили в каждый объем общей массой 216 г наномодификатора, стабилизированного оксидом алюминия, при этом суммарная масса составила из трех емкостей в каждом случае 648 г, что соответствовало в обоих случаях 3,0 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадью сечения 0.196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Результаты испытаний пенополиуретановых нанокомпозитов по сравнению со стандартным пенополиуретаном (плита теплоизоляционная ПТИ-252 по ТУ 5.967-11666-98 без добавок модификаторов) приведены в таблице 1.

Как следует из таблицы 1, предлагаемый способ получения пенополиуретанового нанокомпозита позволяет существенно улучшить механические свойства материала и повысить его температуру возгорания.

Технико-экономические показатели предлагаемого изобретения по сравнению с прототипом позволят увеличить срок службы и надежности изделий, изготовленных из предложенного пенополиуретанового нанокомпозита.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 255.
10.02.2014
№216.012.9ea1

Способ выявления кишечных вирусов в клинических образцах и воде методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к области лабораторной диагностики, медицинской вирусологии, молекулярной биологии и эпидемиологии. Изобретение предназначено для выявления и идентификации в клинических образцах и элюатах, полученных в результате концентрирования из воды, одиннадцати групп кишечных...
Тип: Изобретение
Номер охранного документа: 0002506317
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a26c

Высокопрочная хладостойкая arc-сталь

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002507295
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a26d

Хладостойкая arc-сталь высокой прочности

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой стали высокой прочности и улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности. Сталь содержит компоненты в следующем соотношении, % мас:...
Тип: Изобретение
Номер охранного документа: 0002507296
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a9bf

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к области порошковой металлургии и предназначено для производства износостойких сплавов на основе карбонитридов титана, работающих в сложных условиях динамического нагружения, высоких контактных давлений и скоростей. Износостойкий сплав для высоконагруженных узлов трения...
Тип: Изобретение
Номер охранного документа: 0002509170
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cbd4

Цифровой предохранительный клапан непрямого действия с электроуправлением

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с числовым программным управлением. Цифровой предохранительный клапан непрямого действия с электроуправлением содержит основной каскад с корпусом, в последнем выполнены...
Тип: Изобретение
Номер охранного документа: 0002517951
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d021

Гибридная фоточувствительная схема (гфс)

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных и многоэлементных фотоприемников. Гибридная фоточувствительная схема содержит алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с...
Тип: Изобретение
Номер охранного документа: 0002519052
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d13e

Коррозионностойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным хромоникелевым сталям, применяемым при производстве высокопрочного сортового проката. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,01-0,1, кремний 0,5-1,0, марганец 1,0-5,0, хром...
Тип: Изобретение
Номер охранного документа: 0002519337
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.ddbc

Способ изготовления стеклокерамического материала кордиеритового состава

Изобретение относится к производству высокотермостойких керамических материалов, используемых в изделиях радиотехнического назначения. Технический результат изобретения заключается в снижении диэлектрической проницаемости и тангенса угла диэлектрических потерь. В качестве исходного сырья...
Тип: Изобретение
Номер охранного документа: 0002522550
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df4c

Комплект спецодежды

Изобретение относится к швейной промышленности, а именно к пыле-, вибро- и травмозащитной одежде, предназначенной для работников угольной промышленности. Комплект спецодежды состоит из комбинезона и съемного шлема, при этом нижние части рукавов и штанин комбинезона имеют герметизирующие...
Тип: Изобретение
Номер охранного документа: 0002522950
Дата охранного документа: 20.07.2014
Показаны записи 61-70 из 196.
27.12.2013
№216.012.9099

Сырьевая смесь для получения негорючего нетоксичного теплозвукоизоляционного материала на основе тонкодисперсной минеральной пены

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также...
Тип: Изобретение
Номер охранного документа: 0002502710
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.946d

Состав для нанесения фторполимерного покрытия на полиимидную пленку и устройство для нанесения состава на полиимидную пленку

Изобретение относится к области получения полиимидно-фторопластовых пленок с односторонним и/или двухсторонним фторопластовым покрытием. Состав для форсуночного напыления фторсодержащего полимера на полиимидную пленку представляет собой водную дисперсию фторсодержащего полимера, в которую...
Тип: Изобретение
Номер охранного документа: 0002503691
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.949d

Способ нанесения покрытий с использованием дуги пульсирующей мощности

Изобретение относится к технологии нанесения металлических композиционных материалов плазменным напылением с использованием выносной электрической дугой пульсирующей мощности и может найти использование для изготовления или восстановления изношенных деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002503739
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.949e

Способ получения композиционных покрытий методом коаксиальной лазерной оплавки

Изобретение относится к области получения на деталях наплавкой износостойких покрытий из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности....
Тип: Изобретение
Номер охранного документа: 0002503740
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.976c

Способ фрикционно-лучевой сварки

Изобретение может быть использовано при сварке деталей, в частности, из титановых или медных сплавов, сталей. Инструмент в виде вращающегося с высокой скоростью рабочего сердечника из высокопрочного материала погружают в свариваемые детали и перемещают его по всей длине соединения. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002504463
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9ba4

Способ получения поливинилацеталей

Настоящее изобретение относится к процессу получения поливинилацеталей. Описан способ получения поливинилацеталей, включающий взаимодействие поливинилового спирта с альдегидом или смесью альдегидов в водной среде в присутствии минеральной кислоты с последующей фильтрацией полученной дисперсии...
Тип: Изобретение
Номер охранного документа: 0002505550
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c4a

Цифровой управляющий гидрораспределитель

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с ЧПУ (числовым программным управлением). Гидрораспределитель содержит корпус, гильзу, золотник, боковые крышки, задающее электрическое устройство поворотного типа,...
Тип: Изобретение
Номер охранного документа: 0002505716
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9df2

Способ электрошлаковой выплавки заготовки корпуса с патрубком

Изобретение относится к электрометаллургии и может быть использовано для выплавления фасонных заготовок, в частности корпусов фонтанной арматуры, с фланцами и патрубками. Переплав расходуемого электрода в шлаковой ванне с выплавкой вертикального корпуса и горизонтальных патрубков и увеличением...
Тип: Изобретение
Номер охранного документа: 0002506142
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9ea1

Способ выявления кишечных вирусов в клинических образцах и воде методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к области лабораторной диагностики, медицинской вирусологии, молекулярной биологии и эпидемиологии. Изобретение предназначено для выявления и идентификации в клинических образцах и элюатах, полученных в результате концентрирования из воды, одиннадцати групп кишечных...
Тип: Изобретение
Номер охранного документа: 0002506317
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a26c

Высокопрочная хладостойкая arc-сталь

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002507295
Дата охранного документа: 20.02.2014
+ добавить свой РИД