Вид РИД
Изобретение
Изобретение относится к металлургии и может быть использовано при производстве толстолистового проката из хладостойкой arc-стали высокой прочности улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности.
Для проектирования и строительства таких объектов морской техники, как плавучие и самоподъемные буровые разведочные и добычные платформы, суда категорий arc4-arc9 для эксплуатации в ледовых условиях арктических морей, плавучие краны большой грузоподъемности, ледостойкие терминалы, требуются высокопрочные хладостойкие свариваемые arc-стали с гарантированным пределом текучести 500 МПа, способные обеспечить надежную эксплуатацию сварных конструкций в экстремальных условиях воздействия низких окружающих температур (до минус 50°С) и высоких нагрузок в соответствии с требованиями «Правил…» российского морского регистра судоходства [1, 2]. При этом сталь должна отличаться пониженным уровнем легирования для снижения трудоемкости сварочных работ.
Для изготовления ответственных сварных конструкций используется низкоуглеродистая низколегированная сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,04-0,10; кремний 0,15-0,35; марганец 1,00-1,40; никель 0,1-0,8; медь 0,05-0,20; ванадий 0,02-0,10; ниобий 0,02-0,06; алюминий 0,02-0,06; серу 0,001-0,005; фосфор 0,003-0,015; железо - остальное [3]. В листовом прокате толщиной до 50 мм сталь обеспечивает предел текучести 450-470 МПа, высокую пластичность, ударную вязкость при -80°С, сопротивляемость хрупким и коррозионно-механическим разрушениям, хорошую свариваемость, технологичность, оцениваемую по результатам испытаний проб на холодный изгиб, изотропность свойств и сопротивление слоистому разрыву.
Известна сталь, принятая за прототип, следующего химического состава, мас.% [4]:
|
причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого по формуле
не должна быть выше 0,28%.
Известная сталь обеспечивает высокие требования по хладостойкости до минус 80°С, улучшенную свариваемость (по величине коэффициента трещиностойкости), высокую трещиностойкость по критерию CTOD в зоне термического влияния сварного шва. Основными недостатками указанной стали являются высокая температура нулевой пластичности NDT и недостаточная сопротивляемость хрупкому разрушению, оцениваемая по критерию вязко-хрупкого перехода Ткб.
Техническим результатом изобретения является разработка конструкционной хладостойкой arc-стали высокой прочности с гарантированной величиной предела текучести 500 МПа для судостроения, обладающей гарантированными характеристиками работоспособности в соответствии с требованиями «Правил…» Российского морского регистра судоходства [2]: значения температур вязко-хрупкого перехода для оценки способности материала тормозить распространение хрупкого разрушения должны быть не выше минус 30°С для температуры Ткб, а температура нулевой пластичности NDT должна быть не выше минус 60°С.
Технический результат достигается тем, что сталь, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, серу и железо, дополнительно содержит фосфор, при следующем соотношении компонентов, мас.%:
|
причем величина коэффициента трещиностойкости при сварке Рсм, рассчитываемого в соответствии с [1] (ч.XII, п.4.2.2.) по формуле:
не должна быть выше 0,24%.
Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения фосфором межзеренных границ. Ограничение содержания фосфора в указанных пределах способствует повышению сопротивляемости стали хрупкому разрушению и обеспечению высокой пластичности при температурах до минус 80°С, а в сочетании с введением молибдена в выбранных пределах позволяет исключить отпускную хрупкость.
Ограничение содержания хрома не оказывает значимого влияния на прочность стали, при этом показатели низкотемпературной пластичности и вязкости стали улучшаются.
Содержание углерода в указанных пределах в сочетании с мелкозернистой структурой способствует обеспечению высокой прочности стали. Превышение указанных пределов нецелесообразно вследствие существенного снижения пластичности, вязкости, хладостойкости, а также повышения закаливаемости и увеличения склонности стали к образованию горячих и холодных трещин при сварке.
Выбранные пределы содержания марганца, меди и никеля обеспечивают необходимую прочность стали и ее вязкость при отрицательных температурах посредством твердорастворного упрочнения, а также прокаливаемость за счет повышения стабильности аустенита в ферритной области при γ-α-превращении и образования преимущественно бейнитно-мартенситных структур при закалке проката в толщинах до 50 мм.
Молибден предотвращает формирование феррита и развитие отпускной хрупкости стали. При содержании свыше 0,2% молибден понижает вязкость стали.
Пример. Сталь была выплавлена в дуговой электропечи и после внепечного рафинирования и вакуумирования разлита в слитки. Химический состав приведен в таблице 1.
Слитки нагревали до температуры 1200±20°С в камерной печи и прокатывали на стане «5000» на листы толщиной 10-50 мм, которые подвергали прямой закалке в воду после завершения горячей пластической деформации и последующему отпуску в интервале температур 620÷680°С.
Механические свойства определяли на образцах, вырезанных поперек направления прокатки. Испытание на растяжение выполняли по ГОСТ 1497 на цилиндрических образцах типа III №6 (для листов толщиной 10 мм), цилиндрических образцах типа III №4 (для листов толщиной 35 и 50 мм). Испытания на ударный изгиб выполняли по ГОСТ 9454 на образцах с V-образным надрезом типа 11 при температурах минус 60 и минус 80°С.
Сопротивление хрупкому разрушению листового проката оценивали:
- по критической температуре вязкохрупкого перехода Ткб по методике, приведенной в [1] (часть XII, п.2.4.2.), соответствующей минимальной температуре, при которой в изломе технологической пробы полной толщины, испытанной на статический изгиб, наблюдается 70% волокнистой составляющей;
- по температуре нулевой пластичности NDT, определяемой по результатам динамических испытаний образцов с хрупкой наплавкой по методике, приведенной в [1] (часть XII, п.2.3.2.). Эта температура характеризует условия, при которых материал не способен затормозить трещину при ударном нагружении со скоростью порядка 5 м/с и обеспечить достижение в нем напряжений предела текучести.
Свариваемость оценивали по результатам расчета параметра трещиностойкости при сварке Рсм по вышеприведенной формуле.
Сварные соединения выполняли на образцах с К-образной разделкой кромок автоматической сваркой под флюсом с погонной энергией ~1,0 кДж/мм. От сварных проб отбирали образцы полной толщины на растяжение с расчетной длиной рабочей части , образцы на ударный изгиб тип 11 по ГОСТ 9459 с надрезом, выполненным по линии сплавления (ЛС), и на расстоянии 2, 5 и 20 мм от ЛС, а также образцы для измерения твердости по Виккерсу в различных участках сварного соединения.
Трещиностойкость зоны термического влияния (ЗТВ) оценивали по требованиям Британского стандарта BS 7448 [5]. Для испытаний были использованы образцы на статический изгиб прямоугольного сечения с односторонним краевым надрезом (тип SENB по BS 7448) и гладкими боковыми поверхностями. Выращивание усталостной трещины проводилось при частоте 5-8 Гц. Суммарное число циклов нагружения для образца составило не менее 55000. При испытаниях записывали диаграмму деформирования в координатах "нагрузка - раскрытие берегов трещины". Определение перемещений (раскрытия берегов трещины) производилось датчиком DSR 10/50.
Результаты механических испытаний (средние значения по результатам двух испытаний на растяжение и трех на ударный изгиб) приведены в таблице 2.
Результаты определения характеристик работоспособности основного металла и сварных соединений представлены в таблице 3.
Результаты испытаний показывают, что предлагаемая сталь обеспечивает требуемый уровень прочности, более высокую сопротивляемость хрупким разушениям и свариваемость, а также трещиностойкость при -60°С, удовлетворяющих требованиям «Правил…» Российского морского регистра судоходства [2], чем известная.
Источники информации, использованные при составлении описания изобретения.
1. Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ. Российский Морской Регистр судоходства, 2012 г.
2. Правила классификации и постройки морских судов. Российский Морской Регистр судоходства, 2012 г.
3. Патент Российской Федерации №2269587, МПК С22С 38/16, 2006 г.
4. Патент Российской Федерации №2269588, МПК С22С 38/48, 2006 г. - прототип.
5. BS 7448. Fracture Mechanics Toughness Test. Part 1. Method for determination of K1c, critical CTOD and critical J - values of etallic materials, 1991. Part 2. Method for determination of critical CTOD and critical J values of welds in metallic materials, 1997.
|
Хладостойкая сталь высокой прочности, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, серу и железо, отличающаяся тем, что она дополнительно содержит фосфор при следующем соотношении компонентов, мас.%: причем величина коэффициента трещиностойкости при сварке Р не превышает 0,24%.