×
20.10.2015
216.013.86f2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНОВОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную механоактивацию наномодификатора с последующим введением его в гидроксилсодержащий полиэфир под воздействием ультразвука в количестве 0,5-3,0% относительно веса получаемого нанокомпозита, перемешивание и введение отвердителя. В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия. Способ позволяет улучшить механические свойства материала и повысить его температуру возгорания. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к производству конструкционных материалов, в частности к полимерным композитам, которые включают полимер и неорганическую добавку.

Конструкционные материалы на основе пенополиуретанов представляют существенный интерес для многих видов промышленного и энергетического строительства, а также для судостроения, авиастроения и автомобильной промышленности; этот интерес обусловлен тем, что такие материалы обладают высокими теплоизоляционными свойствами, значительной химической стойкостью по отношению к окружающей среде (атмосфере и, в ряде случаев, водной среде), а также существенными звукоизолирующими свойствами. Использование таких материалов позволяет наиболее экономично обеспечить требуемую теплоизоляцию конструкций. Особое внимание привлекают теплоизоляционные свойства таких материалов при низких температурах, что связано с активно развивающейся отраслью судостроения: проектированием и строительством судов-газоходов, предназначенных для перевозки сжиженных газов.

Основы методик производства теплоизоляционных материалов на основе вспененных полиуретанов изложены, например, в работе Г.А. Булатова «Пенополиуретаны в машиностроении и строительстве». - М: Машиностроение, 1978, с. 12, 19, и 25.

Однако основными недостатками таких материалов, препятствующими их применению в широком спектре задач, являются недостаточные прочностные свойства получаемых конструкционных материалов, и, в ряде случаев, высокая горючесть материалов.

Одним из способов преодоления этих недостатков является введение в матрицу вспененного полиуретана неорганических добавок, обладающих достаточной прочностью, например, речного песка, бетона, углерода, а также добавка в состав гипсовых или цементных вяжущих.

Наиболее близким к заявляемому изобретению является полимерный нанокомпозит и способ его получения (патент RU №2414492, МПК C08L 63/10, B82B 1/00, C09K 21/02, опубл. 20.03.2011) - прототип.

Данный композит содержит эпоксидную смолу, отвердитель и наполнитель - стеклосферы и наномодификатор. В данном изобретении наномодификатором является оксид алюминия и оксид циркония и/или оксид иттрия, изготовленный методом золь-гель синтеза, в варианте обратного соосаждения гидроксидов алюминия и циркония и/или иттрия. Композит получали перемешиванием эпоксидной смолы и наномодификатора, введением отвердителя и постепенным введением стеклосфер.

Недостатками полученного указанным способом полимерного нанокомпозита являются недостаточно высокая механическая прочность, особенно при отрицательных температурах.

Техническим результатом является повышение прочностных характеристик конструкционного материала на основе вспененного полиуретана при сохранении высоких показателей огнестойкости.

Технический результат достигается тем, что в способе получения пенополиуретанового нанокомпозита, включающем введение наномодификатора на основе неорганических оксидных соединений в виде высушенного порошка гидроксилсодержащий полиэфир, перемешивание и введение отвердителя, согласно изобретению, порошок наномодификатора предварительно механоактивируют ультразвуком, а в качестве наномодификатора используют диоксид циркония стабилизированного оксидом иттрия или оксидом алюминия, в количестве 0,5-3,0 мас. % относительно массы получаемого нанокомпозита.

В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия.

Процесс механоактивации приводит к изменению структуры поверхностного слоя частиц наномодификатора, за счет чего обеспечивается гомогенность материала, которая, в свою очередь, во многом определяет его прочностные и огнестойкие свойства.

Улучшение механических свойств пластиков при введении в них наполнителей связан с интегральной величиной поверхности частиц наполнителя, которая тем выше, чем больше количество малоразмерных частиц. Иными словами, агломерация нескольких наноразмерных частиц в одну размерами в сотни микрон в разы понижает интегральную поверхность частиц наполнителя, снижая тем самым положительный эффект его введения. Задачей настоящей работы является достижение как можно более равномерного распределения частиц наномодификатора в объеме матрицы пластика. Очевидно, что такая задача тоже требует присутствия как можно большего количества частиц модификатора, следовательно, с этой точки зрения, наличие наноразмерных частиц предпочтительнее, чем присутствие их агломератов. Кроме того, реакционноспособность наночастиц также отчетливо возрастает с уменьшением их размеров, при приближении размера к характерному для макрообразований (сотни нанометров), качественно новые эффекты нанохимии практически отсутствуют. Исходя из вышеизложенного, устранение агломерации наночастиц на этапе введения их в матрицу пластика под воздействием ультразвука является существенным и в значительной степени определяет положительный эффект влияния введения наномодификатора.

Способ изготовления пенополиуретанового нанокомпозита состоит в следующем. Материал на основе пенополиуретана включает в себя гидроксилсодержащий полиэфир - компонент А и отвердитель - компонент Б (в соотношении А:Б=1:1-1:1,5). В качестве наполнителя в матрицу пенополиуретана вводят механоактивированный наномодификатор, представляющий собой наноразмерный стабилизированный оксидом иттрия или оксидом алюминия диоксид циркония, количество которого может варьироваться от 0,5% до 3,0% относительно веса получаемого нанокомпозита.

Наномодификатор готовят методом золь-гель синтеза в варианте обратного соосаждения.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация (один из режимов помола может быть осуществлен, например, с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов).

Полученный в результате порошок подвергался воздействию ультразвуком с целью разрушения агломератов. Произведенный таким образом наномодификатор имел флюоритоподобную кубическую структуру, большая часть частиц порошка имела характерный размер менее 300 нанометров (90% частиц), при этом средний размер частиц составлял порядка 200 нанометров.

Схематично, химическую реакцию образования пенополиуретана из вышеуказанных компонентов можно представить следующим образом:

Механоактивированный порошок-наномодификатор смешивают небольшими порциями с частью компонента А под воздействием ультразвука и тщательно перемешивают.

Полученную суспензию вводят в основную массу компонента А под воздействием ультразвука. После смешивания всех компонентов под высоким давлением (порядка 100-115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки, полученную массу равномерно распределяют на гладкой подготовленной поверхности заданного размера (пресс-форме) с помощью набора форсунок и оставляют для затвердевания под прессом.

Пример 1.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27, для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом иттрия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Сушка геля проводилась между двумя гладкими стеклянными поверхностями при температуре 110°C под давлением порядка 2 кг/см2 в течение 10 минут, после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан следующим образом: в емкости 0,5-0,55 литра, содержащие компонент А, небольшими порциями вводили 108 г наномодификатора, стабилизированного оксидом иттрия, и параллельно в аналогичные емкости 0,5-0,55 литра, содержащие компонент А, вводили 108 г наномодификатора, стабилизированного оксидом алюминия, что соответствовало в каждом случае по 0,5 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадь сечения 0,196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Пример 2.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27 для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом алюминия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Применяли лиофильную сушку геля (например, на установке Labconco производства США), после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде - нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан в три отдельные емкости объемом 0,7 литра, отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г. при постоянном перемешивании вводили в каждый объем 216 г, при этом суммарная масса из трех емкостей составляла 648 г и параллельно в три такие же емкости объемом 0,7 литра отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г при постоянном перемешивании вводили в каждый объем общей массой 216 г наномодификатора, стабилизированного оксидом алюминия, при этом суммарная масса составила из трех емкостей в каждом случае 648 г, что соответствовало в обоих случаях 3,0 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадью сечения 0.196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Результаты испытаний пенополиуретановых нанокомпозитов по сравнению со стандартным пенополиуретаном (плита теплоизоляционная ПТИ-252 по ТУ 5.967-11666-98 без добавок модификаторов) приведены в таблице 1.

Как следует из таблицы 1, предлагаемый способ получения пенополиуретанового нанокомпозита позволяет существенно улучшить механические свойства материала и повысить его температуру возгорания.

Технико-экономические показатели предлагаемого изобретения по сравнению с прототипом позволят увеличить срок службы и надежности изделий, изготовленных из предложенного пенополиуретанового нанокомпозита.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 255.
27.02.2013
№216.012.2c3d

Способ оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел

Изобретение относится к способу оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел, включающий проведение параллельных отборов проб воздуха гермокабины путем его прокачки через...
Тип: Изобретение
Номер охранного документа: 0002476852
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d92

Промежуточный ковш для разливки стали с камерами для плазменного подогрева жидкого металла

Изобретение относится к металлургии, в частности к непрерывной разливке металла. Ковш содержит две камеры для плазменного подогрева металла, расположенные между приемным и разливочными отсеками, разделенными перегородками с переливными каналами. Переливные каналы в перегородке камеры подогрева...
Тип: Изобретение
Номер охранного документа: 0002477197
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e1c

Сталь

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления массивных изделий, в частности валов роторов турбогенераторов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,20-0,23, кремний 0,01-0,07, марганец 0,3-0,4, хром 1,45-1,60, никель...
Тип: Изобретение
Номер охранного документа: 0002477335
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ed6

Система управления летным экспериментом

Изобретение относится к области средств информационного обеспечения испытаний и исследований летательных аппаратов (ЛА) и их систем и может быть использовано для контроля и управления ходом испытательного (исследовательского) полета воздушных судов (ВС). Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002477521
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f4e

Устройство для отделения частиц от жидкости

Изобретение относится к отделению твердых частиц от жидкости, конкретно, к устройствам, в которых используются турбулентные эффекты, возникающие при протекании жидкости с взвешенными частицами через трубу, и может быть использовано в области гидромеханизации при подводной разработке грунта....
Тип: Изобретение
Номер охранного документа: 0002477645
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.3710

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. Способ включает переплав расходуемого электрода на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля. При...
Тип: Изобретение
Номер охранного документа: 0002479649
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3b08

Устройство для сжигания топлива

Изобретение относится к области энергетики и может быть использовано для сжигания газообразного топлива, а также в химической, нефтехимической и других отраслях промышленности. Устройство для сжигания топлива включает расположенные в цилиндрическом корпусе центральный и периферийный воздушные...
Тип: Изобретение
Номер охранного документа: 0002480673
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3de9

Высокопрочная сталь

Изобретение относится к металлургии, а именно к составам сталей, используемых в энергетическом машиностроении. Сталь содержит, мас.%: углерод 0,07-0,18, марганец 0,40-1,50, кремний 0,17-0,80, молибден 0,10-0,14, ванадий 0,15-0,45, хром 0,50-2,00, алюминий 0,005-0,012, азот 0,002-0,010, титан...
Тип: Изобретение
Номер охранного документа: 0002481416
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.3fc0

Способ селективной каталитической очистки выхлопных и топочных газов от оксидов азота

Изобретение относится к области селективной каталитической очистки выхлопных и топочных газов от оксидов азота. Способ селективной каталитической очистки выхлопных и топочных газов от оксидов азота включает каталитическое удаление оксидов азота из очищаемого газа при использовании аммиака в...
Тип: Изобретение
Номер охранного документа: 0002481890
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.403b

Самолет местных воздушных линий

Изобретение относится к авиационной технике и может быть использовано при разработке самолетов местных воздушных линий пассажировместимостью 18-24 места. Самолет содержит фюзеляж, крыло, хвостовое оперение, силовую установку из двух двигателей и воздушный винт. Двигатели расположены внутри...
Тип: Изобретение
Номер охранного документа: 0002482013
Дата охранного документа: 20.05.2013
Показаны записи 11-20 из 196.
27.02.2013
№216.012.2c32

Устройство для измерения звукового давления

Изобретение относится к измерительной технике и может быть использовано для измерения звукового давления. Устройство содержит датчик с емкостным чувствительным элементом с обкладками конденсатора и экранами, усилитель заряда, состоящий из операционного усилителя, резистора и конденсатора...
Тип: Изобретение
Номер охранного документа: 0002476841
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c33

Устройство для измерения давления, температуры и теплового потока

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления. Техническим результатом изобретения является расширение области применения, повышение информативности и точности измерения давления,...
Тип: Изобретение
Номер охранного документа: 0002476842
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c3d

Способ оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел

Изобретение относится к способу оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел, включающий проведение параллельных отборов проб воздуха гермокабины путем его прокачки через...
Тип: Изобретение
Номер охранного документа: 0002476852
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d92

Промежуточный ковш для разливки стали с камерами для плазменного подогрева жидкого металла

Изобретение относится к металлургии, в частности к непрерывной разливке металла. Ковш содержит две камеры для плазменного подогрева металла, расположенные между приемным и разливочными отсеками, разделенными перегородками с переливными каналами. Переливные каналы в перегородке камеры подогрева...
Тип: Изобретение
Номер охранного документа: 0002477197
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2de1

Способ очистки барбитуровой кислоты

Изобретение относится к способу очистки барбитуровой кислоты. Способ включает растворение барбитуровой кислоты в дистиллированной воде при температуре 70-90°С до концентрации 1-10 мас.%, последующее добавление при перемешивании 9-30 мас.% алюминия оксида, выдержку при этой температуре 10-30...
Тип: Изобретение
Номер охранного документа: 0002477276
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e1c

Сталь

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления массивных изделий, в частности валов роторов турбогенераторов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,20-0,23, кремний 0,01-0,07, марганец 0,3-0,4, хром 1,45-1,60, никель...
Тип: Изобретение
Номер охранного документа: 0002477335
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e99

Способ определения коэффициентов аэродинамических сил и моментов при установившемся вращении модели летательного аппарата и устройство для его осуществления

Изобретения относятся к экспериментальной аэродинамике летательных аппаратов и могут быть использованы при испытаниях моделей различных летательных аппаратов в аэродинамических трубах. Предложенный способ основан на установившемся вращении модели летательного аппарата относительно оси,...
Тип: Изобретение
Номер охранного документа: 0002477460
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ed6

Система управления летным экспериментом

Изобретение относится к области средств информационного обеспечения испытаний и исследований летательных аппаратов (ЛА) и их систем и может быть использовано для контроля и управления ходом испытательного (исследовательского) полета воздушных судов (ВС). Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002477521
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f4e

Устройство для отделения частиц от жидкости

Изобретение относится к отделению твердых частиц от жидкости, конкретно, к устройствам, в которых используются турбулентные эффекты, возникающие при протекании жидкости с взвешенными частицами через трубу, и может быть использовано в области гидромеханизации при подводной разработке грунта....
Тип: Изобретение
Номер охранного документа: 0002477645
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.3710

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. Способ включает переплав расходуемого электрода на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля. При...
Тип: Изобретение
Номер охранного документа: 0002479649
Дата охранного документа: 20.04.2013
+ добавить свой РИД