Вид РИД
Изобретение
Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов.
Известен способ переплава расходуемых электродов в охлаждаемом кристаллизаторе с помощью электрического тока при движении расплава под воздействием электромагнитного поля, которое периодически изменяет направление движения расплава и/или силу воздействия на него (DE 2213393 A1, C22B 9/18, опубликовано 11.10.1973).
Однако реализовать известные способы невозможно ввиду отсутствия сведений о средствах его осуществления при переплаве расходуемых электродов из стали, а также конкретных параметров электромагнитного воздействия.
Наиболее близким по технической сущности и достигаемому результату является известный способ электрошлакового переплава на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля (CN 101624657 A, C22B 9/18, опубликовано 13.01.2010).
Однако при осуществлении известного способа невозможно избежать образования столбчатой крупнозернистой структуры металла при кристаллизации, а также протекания ликвационных процессов и формирования сегрегаций различного типа. Кроме того, на поверхности и внутри слитка имеют место дефекты в виде микропор, трещин, раковин, шлаковых включений и гофров. Это связано с неэффективным процессом теплообмена в зоне плавления расходуемого электрода вследствие формирования ванны расплава металла параболической формы.
Задачей и техническим результатом изобретения является обеспечение эффективного теплообмена в зоне плавления расходуемого электрода, уменьшение дефектности выплавленного слитка, обеспечение простоты и экономичности запуска процесса, снижение себестоимости переплава.
Технический результат достигается тем, что способ электрошлакового переплава включает переплав расходуемого электрода на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля, при этом переплав расходуемого электрода осуществляют при частоте переменного тока 0,01-10 Гц и вводимой в шлаковую ванну мощности, которую поддерживают в соответствии с соотношением P=K·DC, где Р - вводимая в шлаковую ванну мощность, кВт, К - коэффициент, равный 0,6-0,8 кВт/мм, DC - диаметр выплавляемого слитка, мм, а переменное электромагнитное поле напряженностью 2000-14000 А/м и частотой 50 Гц накладывают в области плавления расходуемого электрода после формирования шлаковой и металлической ванны.
Реализацию способа по изобретению можно проиллюстрировать следующим примером.
Для выплавки слитка диаметром 1000 мм использовали расходуемые литые электроды диаметром 900 мм из стали. Начало процесса переплава осуществляли в режиме «сухого старта» (при наличии на дне охлаждаемого кристаллизатора сухого шлака и отсутствии жидкого металла) при частоте переменного тока 0,05 Гц и вводимой в шлак мощности Р=700 кВт, полученной из соотношения
P=K·DC, где
Р - вводимая в шлаковую ванну мощность, кВт,
К - коэффициент, равный 0,7 кВт/мм,
DC - диаметр выплавляемого слитка, мм.
Процесс электрошлакового переплава вели при размещении расходуемого электрода в верхней части шлаковой ванны.
После формирования расплава шлака и расплава расходуемого электрода в межэлектродном промежутке накладывали переменное электромагнитное поле напряженностью 2000-14000 А/м и частотой 50 Гц. Для этого использовали разрезанное медное кольцо, к концам которого был подключен автономный источник питания с регулируемой выходной мощностью до 10 кВт и частотой от 50 Гц. Медное кольцо было установлено в верхней части кристаллизатора, а слиток вытягивали вниз поддоном. Величину напряженности накладываемого электромагнитного поля, генерируемого медным кольцом, контролировали по величине выходного тока и напряжения источника питания после тарирования стандартным методом.
При воздействии электромагнитного поля происходит вращение шлаковой ванны в области плавления расходуемого электрода, что обеспечивает перенос каплями жидкого металла весьма значительной части тепла в периферийную зону, обеспечивая температурному полю металлической ванны равномерный характер по поперечному сечению кристаллизатора. При этом прогрев зоны действия электромагнитного поля не требует дополнительной мощности, подводимой к шлаковой ванне, а центральная часть металлической ванны за счет перераспределения температурного поля в периферийную зону получает меньше тепла. Такой характер распределения тепла позволяет обеспечить получение металлической ванны более плоской формы, что благоприятно сказывается на свойствах выплавляемого слитка: устраняет образование дефектов внутри слитка и на его поверхности в виде микропор, трещин, раковин, шлаковых включений и гофров; обеспечивает равномерное распределение легирующих элементов и мелкозернистую структуру.
Таким образом, предлагаемый способ электрошлакового переплава обеспечивает плоскую форму металлической ванны и соответственно осевую кристаллизацию металла слитков, кроме того, он более экономичен и конкурентно способен.
Способ электрошлакового переплава, включающий переплав расходуемого электрода на переменном токе с наложением на шлаковую и металлическую ванны переменного электромагнитного поля, отличающийся тем, что переплав расходуемого электрода осуществляют при частоте переменного тока 0,01-10 Гц и вводимой в шлаковую ванну мощности, которую поддерживают в соответствии с соотношением P=K·D, где Р - вводимая в шлаковую ванну мощность, кВт, К - коэффициент, равный 0,6-0,8 кВт/мм, D - диаметр выплавляемого слитка, мм, а переменное электромагнитное поле напряженностью 2000-14000 А/м и частотой 50 Гц накладывают в области плавления расходуемого электрода после формирования шлаковой и металлической ванны.