×
10.10.2015
216.013.81c0

Результат интеллектуальной деятельности: МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002564813
Дата охранного документа
10.10.2015
Аннотация: Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения и регистрации инфракрасного (ИК) излучения в нескольких спектральных поддиапазонах инфракрасной области спектра от 3,5 до 12,7 мкм. Многокристальное многоцветное фотоприемное устройство (ФПУ) с расширенной спектральной характеристикой квантовой эффективности содержит кристаллы матриц фоточувствительных элементов (МФЧЭ), детектирующих излучение в различных спектральных диапазонах ИК области спектра, гибридизированных с большими интегральными схемами (БИС) считывания сигнала, при этом с целью расширения спектральной характеристики квантовой эффективности, обеспечения компактности конструкции и повышения универсальности применения устройство содержит как минимум четыре кристалла МФЧЭ, гибридизированных индиевыми микроконтактами с одной или четырьмя БИС считывания сигнала, каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС считывания или части БИС считывания, настроен на отдельный заданный диапазон ИК области спектра, фоточувствительные модули расположены блочно с минимальным зазором между кристаллами (10-20 мкм). 3 з.п. ф-лы, 5 ил.

Изобретение относится к фоточувствительным приборам, предназначенным для обнаружения и регистрации инфракрасного (ИК) излучения в различных спектральных диапазонах, а именно многокристальному многоцветному фотоприемному устройству (ФПУ), предназначенному для детектирования излучения в нескольких спектральных поддиапазонах инфракрасной области спектра от 3,5 до 12,7 мкм.

В настоящее время одним из основных направлений совершенствования оптико-электронной аппаратуры, в первую очередь тепловизионной и теплопеленгационной, является использование многоцветных фотоприемных устройств, чувствительных в нескольких диапазонах спектра.

Известно, что температура объекта наблюдения может быть определена по соотношению излучательных способностей объекта наблюдения в различных спектральных диапазонах с помощью детектирования излучения как минимум в двух спектральных диапазонах.

Важной особенностью аппаратуры на основе многокристальных многоцветных фотоприемных устройств является расширенная спектральная характеристика квантовой эффективности, что позволяет:

- детектировать большое количество событий и наблюдаемых объектов, которые инициируют фотосигналы различной амплитуды в различных спектральных диапазонах;

- сравнивать амплитуды сигналов от фотоприемных устройств, работающих в различных спектральных диапазонах при наблюдении за одними и теми же объектами излучения;

- анализировать местоположение и пространственные характеристики объектов излучения на основе снятия сигналов с элементов матриц фоточувствительных элементов (МФЧЭ), входящих в многокристальное ФПУ;

- анализировать временное распределение параметров наблюдаемых объектов на основе снятия сигналов с элементов различных МФЧЭ, входящих в многокристальное ФПУ;

- идентифицировать события на основе проведенного временного и пространственного анализа.

Такая аппаратура значительно повышает информативность и достоверность систем, вероятность обнаружения и распознавания объектов излучения в условиях искусственных и естественных помех.

Наиболее подходящим материалом для создания современной оптико-электронной аппаратуры с использованием многокристальных многоцветных ФПУ является материал кадмий-ртуть-теллур (CdHgTe, или КРТ). Выбор материала CdHgTe в качестве основного для ФПУ обусловлен тем, что приемники на его основе обеспечивают максимальную квантовую эффективность и чувствительность в ИК-диапазоне спектра.

В настоящее время конструкции многоцветных фотоприемных устройств широко описаны в патентной литературе.

Известна фотоприемная матрица цветного изображения для детектирования излучения в видимой области спектра в видеокамерах и фотоаппаратах, предназначенных для регистрации цветного изображения [RU 238967, H01L 27/146, опубл. 20.10.2009 г.]. Фотоприемная матрица цветного изображения содержит ячейки, имеющие фоточувствительные области, каждая из которых расположена на глубине полупроводниковой структуры, соответствующей генерации носителей заряда от световой компоненты заданного цвета, и обеспечивает детектирование излучения в трех спектральных диапазонах видимой области (красной (R), зеленой (G) и голубой (B)), расположенных по схеме Байера.

Известно многокристальное многоцветное фотоприемное устройство и способ идентификации событий с его помощью «Multi-array sensor and method of identifying events using the same» [EP 0973019, B12, G01J 5/60, опубл. 27.03.2002], принятое в качестве прототипа, содержащее одну или две матрицы фоточувствительных элементов, детектирующих излучение как минимум в двух спектральных диапазонах. В патенте приведены три основных типа конструкции многокристального многоцветного ФПУ, состоящего из матриц фоточувствительных элементов, состыкованных с помощью индиевых микроконтактов с кремниевыми большими интегральными схемами считывания сигнала (фиг. 1, 2, 3 (а, б, в, г), 4), или их комбинация:

- ФПУ, у которого кристаллы матриц чувствительных элементов, гибридизированные с помощью индиевых столбиков с одной интегральной схемой считывания и детектирующие излучение в различных спектральных диапазонах, расположены в одной плоскости; излучение на кристаллы МФЧЭ фокусируется с помощью раздельных оптических систем; при этом расстояние между отдельными кристаллами не лимитируется, поэтому при использовании раздельных оптических систем существенно возрастают габариты ФПУ;

- ФПУ, у которого кристаллы матриц чувствительных элементов, гибридизированные с помощью индиевых столбиков с разными интегральными схемами считывания и детектирующие излучение в различных спектральных диапазонах, расположены в различных плоскостях на значительном расстоянии друг от друга; излучение на кристаллы МФЧЭ фокусируется с помощью одной оптической системы, разделяющей поток излучения на два с помощью полупрозрачной пластины; это приводит к уменьшению как минимум в два раза интенсивности падающего на отдельные кристаллы МФЧЭ потока излучения и существенно возрастают габариты ФПУ;

- ФПУ, у которого имеется один кристалл МФЧЭ, гибридизированный с помощью индиевых столбиков с одной интегральной схемой считывания; нами не рассматривается, т.к. не является многокристальным.

Задачей предлагаемого изобретения является создание компактной универсального применения конструкции многокристального многоцветного фотоприемного устройства с расширенной спектральной характеристикой квантовой эффективности, состоящего из отдельных кристаллов матриц фоточувствительных элементов, гибридизированных с помощью индиевых микроконтактов с одной или несколькими большими интегральными схемами считывания фотосигнала.

Технический результат достигается тем, что многокристальное многоцветное фотоприемное устройство состоит как минимум из четырех матриц фоточувствительных элементов, детектирующих излучение в двух, трех или четырех спектральных диапазонах ИК области спектра, и одной или четырех БИС считывания, гибридизированных индиевыми микроконтактами с кристаллами МФЧЭ; при этом каждый фоточувствительный модуль, состоящий из кристаллов МФЧЭ и БИС считывания сигнала или части БИС считывания, настроен на отдельный заданный спектральный диапазон ИК области спектра, что позволяет ФПУ работать без уменьшения фотосигналов и потери информативности изображения, а фоточувствительные модули, работающие в разных спектральных диапазонах, располагаются с минимальным зазором между кристаллами (10-20 мкм).

Для данной конструкции ФПУ изображение наблюдаемых объектов фокусируется оптической системой одновременно на каждый из четырех кристаллов МФЧЭ, работающих параллельно в четырех (двух или трех) спектральных диапазонах.

Каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС считывания сигнала, работает в своем заданном спектральной диапазоне ИК области спектра за счет использования специально выращенных гетероструктур полупроводникового материала КРТ с рабочими фоточувствительными слоями определенного состава, оптимизированными под заданные спектральные диапазоны ИК области спектра.

Изобретение поясняется чертежами, где на фиг. 1 представлена структура многокристального многоцветного ФПУ; на фиг. 2 - прецизионная сборка четырех кристаллов МФЧЭ, гибридизированных с четырьмя БИС считывания на общую коммутирующую подложку; фиг. 3 (а, б, в, г) - спектральные характеристики фоточувствительности МФЧЭ в ИК области спектра от 3,5 до 12,7 мкм; фиг. 4 - конструкция гетероэпитаксиальной структуры КРТ; фиг. 5 - фрагмент кристалла матрицы фоточувствительных элементов с индиевыми столбиками.

Многокристальное многоцветное фотоприемное устройство (фиг.1), состоит как минимум из четырех матриц фоточувствительных элементов (позиции 1-4), детектирующих излучение в двух, трех или четырех спектральных диапазонах ИК области спектра (от 3,5 до 12,7 мкм), одной или четырех больших интегральных схем считывания (позиции 5-8), гибридизированных индиевыми микроконтактами с кристаллами МФЧЭ, коммутирующей подложки (позиция 9), вакуумного корпуса (позиция 10).

Для получения изображения от наблюдаемых объектов необходимо сфокусировать изображение объектов в плоскость расположения матриц фоточувствительных элементов, при этом используется одна оптическая система (не показана), чтобы изображение фокусировалось на элементы всех матриц одновременно. Фоточувствительные модули, состоящие из кристаллов МФЧЭ и БИС, располагаются как можно ближе друг к другу с минимальным зазором между кристаллами (10-20 мкм). Для лучшей идентификации изображений массивы имеют одинаковое количество элементов, которое не лимитируется в рамках данного изобретения. Массивы могут быть прямоугольными или квадратными матрицами, от 64×64 и более элементов, что определяется требуемой разрешающей способностью. Матрицы МФЧЭ, представленные в качестве примера на фиг. 2, имеют размер 384×288 элементов и располагаются в едином корпусе, который устраняет доступ нежелательных внешних воздействий. Корпус содержит входное окно, которое одновременно может быть элементом оптической системы.

Многокристальное многоцветное ФПУ изготавливается, используя технологический процесс прецизионной сборки фоточувствительных модулей, состоящих из кристаллов МФЧЭ и БИС, на общую коммутирующую подложку с зазором между фоточувствительными модулями не более 10-20 мкм. При этом отсутствие одного или двух рядов элементов в МФЧЭ (в месте стыковки фоточувствительных модулей) при формирования ИК-изображения мало отразится на качестве самого изображения. На фиг. 2 представлен процесс прецизионной сборки фоточувствительных модулей в единое ФПУ формата 768×576 элементов, состоящее из четырех фоточувствительных модулей формата 384×288 элементов, который включает следующие основные операции:

- подготовку поверхностей фоточувствительных модулей, состоящих из МФЧЭ и БИС, и коммутирующей подложки к приклеиванию;

- нанесение вакуумного клея;

- точное позиционирование фоточувствительных модулей с прижимом при помощи микроманипуляторов и контролем зазоров между кристаллами при помощи микроскопа.

Каждый фоточувствительный модуль, состоящий из кристалла МФЧЭ и БИС, работает в своем заданном спектральном диапазоне ИК области спектра за счет использования специально выращенных гетероструктур полупроводникового материала КРТ с рабочими фоточувствительными слоями определенного состава, оптимизированными под заданные спектральные диапазоны. На фиг. 3 (а, б, в, г) представлены спектральные характеристики фоточувствительности кристаллов МФЧЭ, используемых для различных модификаций ФПУ.

Кристаллы МФЧЭ предназначены для детектирования излучения в ИК спектральном диапазоне от 3,5 до 12,7 мкм. Основные спектральные поддиапазоны, в которых работают отдельные фоточувствительные модули: 3,5-4,4 мкм; 5,0-7,0 мкм, 8,3-10,6 мкм; 10,4-12,7 мкм, при этом длинноволновая граница фоточувствительности обеспечивается составом фоточувствительного материала КРТ, а коротковолновая граница фоточувствительности обеспечивается фильтрующим покрытием на подложке МФЧЭ. Многокристальные многоцветные ФПУ могут состоять из различных комбинаций фоточувствительных модулей, чувствительных в представленных выше спектральных диапазонах ИК области спектра в зависимости от задачи, решаемой оптико-электронным прибором, в который входит данное многокристальное многоцветное ФПУ.

Матрица фоточувствительных элементов изготовляется на основе многослойной полупроводниковой гетероэпитаксиальной структуры из трехкомпонентного твердого раствора кадмий-ртуть-теллур CdxHg1-xTe.

Гетероэпитаксиальная структура кристалла матрицы фоточувствительных элементов представлена на фиг. 4 и содержит последовательно расположенные:

11 - подложку кадмий-цинк-теллур (CdZnTe);

12 - буферные слои ZnTe, CdTe;

13 - варизонный слой, состав которого x плавно изменяется от 1,0±0,05 до рабочего состава в направлении от подложки;

14 - рабочий поглощающий фоточувствительный слой CdxHg1-xTe заданного состава x p-типа проводимости, соответствующий одному из вышеприведенных спектральных диапазонов;

15 - фотодиодный слой CdxHg1-xTe n+-типа проводимости, формирующий фотодиоды;

16 - диэлектрическое покрытие, толщиной порядка 1 мкм;

Большая интегральная схема считывания обеспечивает параллельное считывание и обработку сигнала с кристалла МФЧЭ заданного спектрального диапазона многокристального многоцветного ФПУ в ИК области спектра от 3,5 до 12,7 мкм.

Контакты каждого из кристаллов матрицы фоточувствительных элементов состыкованы с контактами одной или четырьмя большими интегральными схемами считывания. Большие интегральные схемы считывания или единая схема БИС работают в параллельном режиме синхронного считывания информации с четырех кристаллов МФЧЭ. Для вывода сигналов выходные контактные площадки БИС соединены с контактными выводами специальной контактной подложки (растра), после чего выводятся на разъем ФПУ.

В процессе работы фотоприемного устройства поток излучения с энергией кванта hν≥Eg проходит через подложку из CdZnTw - 11, через буферный слой CdTe - 12. Затем поток излучения поглощается в рабочем фоточувствительном слое 13 заданного состава. Неравновесные носители заряда, генерированные излучением в рабочем фоточувствительном слое 13, диффундируют к области объемного заряда, образованной на границах полупроводников p- и n-типа, где втягиваются электрическим полем p-n-переходов и принимают участие в процессе возникновения электрического тока.

Разделение падающего на МФПУ пучка ИК-излучения осуществляется специальной оптической системой, работающей в ИК области спектра, со светоделителями. Последующее совмещение ИК-изображений от отдельных кристаллов фоточувствительных модулей на общий экран осуществляется специальным блоком электроники на основе сигнального процессора. Оптическая система может иметь диспергирующий элемент (призма), в этом случае МФПУ работает как гиперспектральное устройство.

Многокристальное многодиапазонное ФПУ обеспечивает регистрацию наблюдаемых объектов в четырех измерениях (двумерное пространство изображений, время, спектральный диапазон); позволяет определять температуры наблюдаемых объектов по соотношению излучательных способностей объекта в различных спектральных диапазонах; обеспечивает повышение точности временного и пространственного анализа за счет сравнения фотосигналов в различных спектральных диапазонах. Многокристальное многоцветное ФПУ обладает расширенной спектральной характеристикой квантовой эффективности за счет использования четырех кристаллов МФЧЭ, работающих в четырех (возможно двух или трех) спектральных диапазонах ИК-области спектра.


МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
МНОГОКРИСТАЛЬНОЕ МНОГОЦВЕТНОЕ ФОТОПРИЕМНОЕ УСТРОЙСТВО С РАСШИРЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ КВАНТОВОЙ ЭФФЕКТИВНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 21.
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.6912

Способ изготовления индиевых микроконтактов ионным травлением

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. Сущность изобретения: в способе изготовления индиевых микроконтактов пластину с матрицами БИС или фотодиодными матрицами защищают перфорированной в местах...
Тип: Изобретение
Номер охранного документа: 0002492545
Дата охранного документа: 10.09.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.de97

Способ изготовления индиевых микроконтактов с помощью позитивного обращаемого фоторезиста

Использование: для получения индиевых микроконтактов и соединения больших интегральных схем (БИС) и фотодиодных матриц. Сущность изобретения заключается в том, что на полупроводниковую пластину с металлическими площадками для формирования индиевых микроконтактов наносят слой позитивного...
Тип: Изобретение
Номер охранного документа: 0002522769
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb8

Способ изготовления микроконтактов матричных фотоприемников

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. В способе изготовления микроконтактов матричных фотоприемников согласно изобретению формируют на пластине с матрицами БИС или фотодиодными матрицами...
Тип: Изобретение
Номер охранного документа: 0002522802
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e26e

Способ обнаружения скрытых дефектов матричных бис считывания

Изобретение относится к тестированию матричных БИС считывания и может быть использовано для определения координат скрытых дефектов типа утечек сток-исток, которые невозможно обнаружить до стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов. На кремниевой пластине с годными...
Тип: Изобретение
Номер охранного документа: 0002523752
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ed09

Способ сборки ик-фотоприемника

Изобретение относится к технологии гибридизации ИК-фотоприемника способом перевернутого монтажа (flip chip) и может быть использовано для выравнивания зазоров между кристаллами БИС и МФЧЭ, что приводит к увеличению надежности соединения и стойкости к термоциклированию соединения кристаллов, с...
Тип: Изобретение
Номер охранного документа: 0002526489
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f783

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов в матрице ик фпу

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Технический результат - повышение производительности измерения. Способ измерения квантовой эффективности и темнового тока фоточувствительного элемента (ФЧЭ)...
Тип: Изобретение
Номер охранного документа: 0002529200
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc64

Способ изготовления многоэлементного фотоприемника на основе эпитаксиальных структур ingaas/inp

Изобретение может быть использовано в системах лазерной локации, обнаружения лазерного излучения, ИК-спектрометрии, многоспектральных ВОЛС, а также нового поколения систем ночного видения. Согласно изобретению изготовление многоэлементного фотоприемника на основе эпитаксиальных p-i-n-структур...
Тип: Изобретение
Номер охранного документа: 0002530458
Дата охранного документа: 10.10.2014
20.12.2014
№216.013.124f

Способ изготовления фотоприемников на основе эпитаксиальных p-i-n структур gan/ algan

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlGaN, преобразующих излучение ультрафиолетовой области спектра. Согласно изобретению предложен способ изготовления многоэлементного фотоприемника на основе эпитаксиальных p-i-n структур GaN/AlGaN....
Тип: Изобретение
Номер охранного документа: 0002536110
Дата охранного документа: 20.12.2014
Показаны записи 1-10 из 33.
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.6912

Способ изготовления индиевых микроконтактов ионным травлением

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. Сущность изобретения: в способе изготовления индиевых микроконтактов пластину с матрицами БИС или фотодиодными матрицами защищают перфорированной в местах...
Тип: Изобретение
Номер охранного документа: 0002492545
Дата охранного документа: 10.09.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.de97

Способ изготовления индиевых микроконтактов с помощью позитивного обращаемого фоторезиста

Использование: для получения индиевых микроконтактов и соединения больших интегральных схем (БИС) и фотодиодных матриц. Сущность изобретения заключается в том, что на полупроводниковую пластину с металлическими площадками для формирования индиевых микроконтактов наносят слой позитивного...
Тип: Изобретение
Номер охранного документа: 0002522769
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb8

Способ изготовления микроконтактов матричных фотоприемников

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. В способе изготовления микроконтактов матричных фотоприемников согласно изобретению формируют на пластине с матрицами БИС или фотодиодными матрицами...
Тип: Изобретение
Номер охранного документа: 0002522802
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e26e

Способ обнаружения скрытых дефектов матричных бис считывания

Изобретение относится к тестированию матричных БИС считывания и может быть использовано для определения координат скрытых дефектов типа утечек сток-исток, которые невозможно обнаружить до стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов. На кремниевой пластине с годными...
Тип: Изобретение
Номер охранного документа: 0002523752
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ed09

Способ сборки ик-фотоприемника

Изобретение относится к технологии гибридизации ИК-фотоприемника способом перевернутого монтажа (flip chip) и может быть использовано для выравнивания зазоров между кристаллами БИС и МФЧЭ, что приводит к увеличению надежности соединения и стойкости к термоциклированию соединения кристаллов, с...
Тип: Изобретение
Номер охранного документа: 0002526489
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f783

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов в матрице ик фпу

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Технический результат - повышение производительности измерения. Способ измерения квантовой эффективности и темнового тока фоточувствительного элемента (ФЧЭ)...
Тип: Изобретение
Номер охранного документа: 0002529200
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc64

Способ изготовления многоэлементного фотоприемника на основе эпитаксиальных структур ingaas/inp

Изобретение может быть использовано в системах лазерной локации, обнаружения лазерного излучения, ИК-спектрометрии, многоспектральных ВОЛС, а также нового поколения систем ночного видения. Согласно изобретению изготовление многоэлементного фотоприемника на основе эпитаксиальных p-i-n-структур...
Тип: Изобретение
Номер охранного документа: 0002530458
Дата охранного документа: 10.10.2014
20.12.2014
№216.013.124f

Способ изготовления фотоприемников на основе эпитаксиальных p-i-n структур gan/ algan

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlGaN, преобразующих излучение ультрафиолетовой области спектра. Согласно изобретению предложен способ изготовления многоэлементного фотоприемника на основе эпитаксиальных p-i-n структур GaN/AlGaN....
Тип: Изобретение
Номер охранного документа: 0002536110
Дата охранного документа: 20.12.2014
+ добавить свой РИД