×
27.09.2014
216.012.f783

СПОСОБ ИЗМЕРЕНИЯ КВАНТОВОЙ ЭФФЕКТИВНОСТИ И ТЕМНОВОГО ТОКА ФОТОЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ В МАТРИЦЕ ИК ФПУ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002529200
Дата охранного документа
27.09.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Технический результат - повышение производительности измерения. Способ измерения квантовой эффективности и темнового тока фоточувствительного элемента (ФЧЭ) включает установку ФПУ на заданном расстоянии от излучающей поверхности протяженного абсолютно черного тела (АЧТ), выставляют заданную температуру излучения АЧТ и регистрируют величины сигналов всех ФЧЭ при нулевом времени накопления и заданном времени накопления, а перед третьей регистрацией сигналов ФЧЭ уменьшают коэффициент черноты АЧТ, оставляя его температуру неизменной, проводят третью регистрацию величины сигналов всех ФЧЭ при заданном времени накопления и заданной температуре АЧТ и рассчитывают величины квантовых эффективностей и темновых токов ФЧЭ по трем измеренным массивам сигналов. 1 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Эти устройства являются сложными высокотехнологичными приборами. Они работают в диапазонах 1-2,8 мкм, 3-5 мкм, 8-12 мкм и далее вплоть до 100-150 мкм, включают матрицу фоточувствительных элементов (МФЧЭ), содержащую от более 1000 (формат 4×288) фотодиодов, до более чем 1000000 (формат 1280×1024) фотодиодов, состыкованных с таким же количеством ячеек интегрального кремниевого мультиплексора. Мультиплексор выполняет накопление фототоков фоточувствительных элементов (ФЧЭ) в ячейках, поэлементное считывание накопленных зарядов, преобразование их в напряжение, предварительное усиление и вывод сигналов, как правило, на несколько выходов с заданной частотой кадров. Современные мультиплексоры-процессоры кроме этого преобразуют выходной сигнал из аналоговой формы в цифровую форму и осуществляют предварительную цифровую обработку сигналов. При этом рабочая температура матрицы и мультиплексора может быть и достаточно низкой, чтобы снизить обратные токи ФЧЭ. Это достигается расположением их в вакуумированном корпусе на холодном пальце микрокриогенной системы, также представляющей собой сложное электронно-механическое устройство.

ИК ФПУ обязательно включает следующие составные части:

- светонепроницаемый корпус;

- входное окно в корпусе, как правило, просветленное в заданной части спектра;

- светонепроницаемый и охлаждаемый экран с окном (диафрагмой), соосной с входным окном;

- светофильтр, расположенный в охлаждаемом экране (если необходим);

- МФЧЭ, окруженная светонепроницаемым экраном, соосная с диафрагмой и входным окном ФПУ;

- МОП мультиплексор, состыкованный поэлементно с МФЧЭ;

- плата с контактными дорожками (сапфир, кремний и т.д.), на которой закреплен мультиплексор с МФЧЭ и разварены его контакты;

- система охлаждения или фиксации рабочей температуры (если необходима), на которой закреплен экран, растр с контактными дорожками, со сборкой МФЧЭ-мультиплексор и с датчиком температуры.

При изготовлении ФПУ необходимо контролировать параметры всех его составных частей, т.к. от них зависят параметры будущего устройства.

Входное окно, светонепроницаемый экран, охлаждаемый светофильтр, растр с контактными дорожками, система охлаждения или фиксации рабочей температуры МФЧЭ и мультиплексор контролируются до сборки ФПУ и все их параметры известны.

МФЧЭ косвенно контролируется до сборки ФПУ по нескольким тестовым ФЧЭ, расположенным вне матрицы. Их измеряемые параметры - относительная спектральная чувствительность, токовая чувствительность, темновой ток, вольтамперная характеристика (ВАХ) и дифференциальное сопротивление. В самой МФЧЭ до сборки известен лишь шаг ФЧЭ, размеры фоточувствительного поля и формат матрицы.

Таким образом, из всех компонент ФПУ косвенно контролируемой (по ФЧЭ-спутникам) компонентой является лишь МФЧЭ.

В то же время МФЧЭ определяет все важнейшие параметры ФПУ. Этими параметрами являются: пороговая облученность (NEI), пороговая мощность (NEP), удельная обнаружительная способность (D), пороговая разность температур (NETD), динамический диапазон, токовая и вольтовая чувствительности, однородность характеристик по площади МФЧЭ, количество дефектных ФЧЭ.

Параметрами, ответственными за эти характеристики, является квантовая эффективность и темновой ток ФЧЭ. Практически, они определяют все характеристики ИК ФПУ.

Для нормальной работы ФПУ чрезвычайно важно, чтобы однородность этих параметров по всем ФЧЭ была бы не хуже заданной величины. Кроме этого необходимо, чтобы величина темнового тока IT не превышала некоторое граничное значение IO, а величина квантовой эффективности η была бы не ниже граничного значения ηO. Все ФЧЭ, не удовлетворяющие подобным требованиям, считаются дефектными.

Для современных ФПУ количество дефектных элементов не должно превышать величину от 0,1 до 1%.

По этим причинам необходим надежный, автоматизированный и корректный способ контроля величины квантовой эффективности и темнового тока каждого ФЧЭ ИК ФПУ с целью определения количества дефектных элементов в матрице.

Известен способ измерения квантовой эффективности и темнового тока фоточувствительных элементов в матрице ИК ФПУ [заявка на изобретение №2012108772 от 07.03.2012 г., МКИ H01J 40/14, Решение о выдаче патента от 11.03.2013].

В известном способе ФПУ устанавливают на заданном расстоянии от излучающей поверхности протяженного АЧТ, выставляют первую заданную температуру излучения АЧТ и регистрируют величины сигналов всех ФЧЭ при нулевом времени накопления и заданном времени накопления, устанавливают вторую заданную температуру излучения АЧТ, отличающуюся от первой на заданную величину δТ, и регистрируют величины сигналов всех ФЧЭ при заданном времени накопления. Затем по трем измеренным массивам сигналов автоматически рассчитывают величины квантовых эффективностей и темновых токов ФЧЭ.

Недостатком указанного способа является необходимость измерения сигналов ФЧЭ при двух разных температурах АЧТ, т.к. при этом перестройка температуры занимает около 20-30 минут, что повышает трудоемкость измерения и, соответственно, его стоимость.

Задачей заявляемого способа является снижение трудоемкости измерения квантовой эффективности и темнового тока ФЧЭ в матрицах ФПУ.

Технический результат достигается тем, что в известном способе измерения квантовой эффективности и темнового тока ФЧЭ ФПУ устанавливают на заданном расстоянии от излучающей поверхности протяженного АЧТ, выставляют заданную температуру излучения АЧТ и регистрируют величины сигналов всех ФЧЭ при нулевом времени накопления и заданном времени накопления, а перед третьей регистрацией сигналов ФЧЭ уменьшают коэффициент черноты АЧТ, оставляя его температуру неизменной, проводят третью регистрацию величины сигналов всех ФЧЭ при заданном времени накопления и заданной температуре АЧТ и рассчитывают величины квантовых эффективностей и темновых токов ФЧЭ по трем измеренным массивам сигналов.

Технический результат достигается также тем, что расстояние L от МФЧЭ до излучающей поверхности протяженного АЧТ удовлетворяет соотношению

,

величину квантовой эффективности ηij каждого ФЧЭ рассчитывают по формуле

а величину темнового тока ФЧЭ ITij рассчитывают по формуле

где D - минимальный линейный размер излучающей поверхности АЧТ, см;

d - максимальный линейный размер охлаждаемой диафрагмы, см;

l - расстояние от МФЧЭ до охлаждаемой диафрагмы, см;

d1 - диагональ фоточувствительного поля, см;

τн - заданное время интегрирования, с;

ΔU21ij - разность измеренных сигналов ФЧЭ с индексом ij, при τн0 и при τн=0, температуре АЧТ Т и коэффициенте черноты АЧТ ε1, В;

ΔU23ij - разность измеренных сигналов ФЧЭ с индексом ij, при τн0 и коэффициентах черноты АЧТ ε1 и ε2, В;

Сн - заданная величина накопительной емкости в ячейке ФПУ, Ф;

As - заданная площадь фоточувствительного элемента, см2;

q - заряд электрона, 1,6·10-19 К;

N0(T) - рассчитанная интегральная фотонная облученность от АЧТ при температуре Т, фот·см-2·с-1;

ε1 и ε2 - измеренные коэффициенты черноты АЧТ;

К0 - измеренный коэффициент пропускания окна ФПУ;

К1 - измеренный коэффициент пропускания охлаждаемого светофильтра;

Knpij - рассчитанный коэффициент пропускания холодной диафрагмы для ФЧЭ с индексами ij.

Сущность заявляемого способа состоит в следующем.

При расположении протяженного АЧТ на расстоянии, не превышающем заданную величину L все ФЧЭ «видят» только однородный по температуре фон. Тогда сигнал каждого ФЧЭ, регистрируемый при облучении сквозь охлаждаемую диафрагму, описывается следующим выражением [А.И.Патрашин, И.Д.Бурлаков, А.А.Лопухин, Н.И.Яковлева, Экспериментальное исследование метода расчета параметров ИК ФПУ, Прикладная физика, 2012, принято в печать]:

где Тфij(ε, T) - фотонная облученность ФЧЭ с индексом ij, фотонов/см2·с;

Uconstij - постоянное напряжение выходного сигнала мультиплексора от ячейки с индексом ij, являющееся точкой отсчета нулевого сигнала, соответствующее нулевому фототоку и темновому току ФЧЭ с индексом ij, В.

Сигнал ФЧЭ содержит три неизвестные величины - темновой ток, квантовую эффективность и Uconst. Следовательно, если провести три измерения сигналов всех ФЧЭ при разных условиях, то для каждого ФЧЭ мы получим систему трех уравнений с тремя неизвестными IT, η и Uconst. Решая такую систему уравнений относительно темнового тока, квантовой эффективности и Uconst мы определим указанные параметры.

Первое измерение сигнала проводится при τн=0.

Второе измерение сигнала проводится при значении τн0, коэффициенте черноты АЧТ ε1 и температуре излучения Т.

Третье измерение проводится при значении τн0, коэффициенте черноты АЧТ ε2 и той же температуре излучения Т.

Рассмотрим систему уравнений, соответствующих указанным измерениям.

Сигналы, регистрируемые при заданной температуре излучения Т, заданных коэффициентах черноты АЧТ ε1 и ε2 и заданных временах накопления 0 и τ0, определяются следующими выражениями:

U0ij(ITij, ηij, ε1, T, 0)=Uconstij

Здесь Nфij1, T) и Nфij2, T) - расчетные экспериментально-конструктивные параметры, определяемые следующими соотношениями [А.И. Патрашин, Теоретическое исследование фоновых облученностей ИК МФЧЭ с холодными диафрагмами заданных типов, Прикладная физика, № 3, 2011, С. 98]:

Nфij1, T)=K0·K1·Knpij·ε1·N0(T),

Nфij2, T)=K0·K1·Knpij·ε2·N0(T),

где N0(T) - расчетная величина интегральной облученности, создаваемой идеальным АЧТ с температурой Т, фотонов/см2·с;

Коэффициент пропускания холодной диафрагмы произвольной формы определяется следующим выражением [А.И.Патрашин, Теоретическое исследование фоновых облученностей ИК МФЧЭ с холодными диафрагмами заданных типов, Прикладная физика, № 3, 2011, С. 98]:

где xi, yj - координаты центра ФЧЭ с индексами i, j;

l - расстояние от диафрагмы до матрицы, см;

R(ϕ) - радиус-вектор диафрагмы, определяющий ее форму, см;

ρ и ϕ - радиус и угол интегрирования в полярных координатах плоскости диафрагмы, см, радиан.

Индексы ij определяют ФЧЭ с координатами центра, удовлетворяющими следующим соотношениям:

;

где ax и by - известные размеры ФЧЭ по осям x и у;

a и b - известные размеры фоточувствительного поля матрицы;

i и j - индексы, определяющие номер ФЧЭ в строке и столбце.

Интегральная облученность от ИК АЧТ с температурой Т выражается законом Планка, имеет размерность фотонов·см-2·с-1 и определяется следующим выражением:

где c=2,998·1010 см·с-1 - скорость света;

kB=1,381-10-23 Вт·с·К-1 - постоянная Больцмана;

h=6,626-10-34 Вт·с2 - постоянная Планка.

Коэффициент черноты стандартного АЧТ составляет величину ε1=0,92 -0,98. В нашем случае АЧТ должен иметь и второе значение коэффициента черноты ε2=0,2-0,4. Это реализуется достаточно просто, а оба коэффициента черноты измеряются при аттестации или поверке АЧТ.

Решая вышеуказанную систему уравнений относительно ITij и ηij получим следующие выражения для их определения:

Значения ηij представляют собой средние по спектру чувствительности ФЧЭ величины квантовой эффективности, которые при заданной постоянной температуре фона определяются следующим выражением:

При проведении расчетов используется также средняя величина коэффициента пропускания входного окна ФПУ K0 и средняя величина коэффициента пропускания охлаждаемого светофильтра K1, определяемые следующими выражениями:

где K0(λ) и K1(λ) - измеренные спектры пропускания входного окна и охлаждаемого светофильтра. Эти спектры имеют очень слабую зависимость в заданном спектральном интервале и поэтому средние коэффициенты пропускания окна и фильтра справедливо считать постоянными. Ошибка при этом не превышает 2-3%.

Вся обработка массивов автоматически проводится на компьютере.

Заявленный способ свободен от недостатков известного способа. Он позволяет повысить производительность способа измерения, например поворотом плоского АЧТ с двумя излучающими поверхностями на 180°, что позволит уменьшить время измерений, по крайней мере, на 30 минут без изменения температуры АЧТ.

В результате, зная параметры всех ФЧЭ, можно автоматически получить все параметры ФПУ: пороговую облученность (NEI), пороговую мощность (NEP), удельную обнаружительную способность (D*), пороговую разность температур (NETD), динамический диапазон, токовую и вольтовую чувствительности, однородность характеристик по площади МФЧЭ и количество дефектных ФЧЭ.


СПОСОБ ИЗМЕРЕНИЯ КВАНТОВОЙ ЭФФЕКТИВНОСТИ И ТЕМНОВОГО ТОКА ФОТОЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ В МАТРИЦЕ ИК ФПУ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
20.01.2013
№216.012.1de9

Ик-фотодиод с высоким отношением сигнал/шум и способ повышения отношения сигнал/шум в ик-фотодиоде

Изобретения относятся к фотоэлектронике и могут использоваться в пороговых фотоприемных устройствах для регистрации слабого электромагнитного излучения инфракрасного диапазона. ИК-фотодиод с высоким отношением сигнал/шум, содержит сильнолегированный слой, прилегающий к прозрачной для...
Тип: Изобретение
Номер охранного документа: 0002473151
Дата охранного документа: 20.01.2013
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d84c

Способ измерения шума узлов мфпу

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума с выключенным напряжением питания ФПУ, измерение напряжения шума с включенным напряжением питания ФПУ и заданным временем накопления ФПУ,...
Тип: Изобретение
Номер охранного документа: 0002521150
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ed09

Способ сборки ик-фотоприемника

Изобретение относится к технологии гибридизации ИК-фотоприемника способом перевернутого монтажа (flip chip) и может быть использовано для выравнивания зазоров между кристаллами БИС и МФЧЭ, что приводит к увеличению надежности соединения и стойкости к термоциклированию соединения кристаллов, с...
Тип: Изобретение
Номер охранного документа: 0002526489
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.04ac

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n-фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Способ изготовления кремниевого фотодиода согласно изобретению включает операции термического окисления, диффузии фосфора для формирования областей n-типа...
Тип: Изобретение
Номер охранного документа: 0002532594
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.161f

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Согласно изобретению в способе изготовления кремниевых p-i-n фотодиодов для снижения концентрации электрически активных центров, создаваемых загрязняющими...
Тип: Изобретение
Номер охранного документа: 0002537087
Дата охранного документа: 27.12.2014
27.01.2015
№216.013.2097

Охлаждаемое основание фотоприемного устройства

Изобретение относится к системам охлаждения фотоприемных устройств. Охлаждаемое основание фотоприемного устройства выполнено из материала, имеющего одинаковый или близкий к охлаждаемому элементу коэффициент теплового расширения и для снижения неравномерности охлаждения через всю длину основания...
Тип: Изобретение
Номер охранного документа: 0002539791
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.26eb

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Они предназначены для использования в различной электронно-оптической аппаратуре, в которой требуется регистрация коротких импульсов лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002541416
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2ca2

Состав полирующего травителя для теллурида кадмия-ртути

Изобретение относится к области обработки поверхности теллурида кадмия-ртути химическим полирующим травлением. Состав полирующего травителя для теллурида кадмия-ртути включает компоненты при следующем соотношении, в объемных долях: метанол (95%) - 5, этиленгликоль - 13, бромистоводородная...
Тип: Изобретение
Номер охранного документа: 0002542894
Дата охранного документа: 27.02.2015
Показаны записи 1-10 из 27.
20.01.2013
№216.012.1de9

Ик-фотодиод с высоким отношением сигнал/шум и способ повышения отношения сигнал/шум в ик-фотодиоде

Изобретения относятся к фотоэлектронике и могут использоваться в пороговых фотоприемных устройствах для регистрации слабого электромагнитного излучения инфракрасного диапазона. ИК-фотодиод с высоким отношением сигнал/шум, содержит сильнолегированный слой, прилегающий к прозрачной для...
Тип: Изобретение
Номер охранного документа: 0002473151
Дата охранного документа: 20.01.2013
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d84c

Способ измерения шума узлов мфпу

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума с выключенным напряжением питания ФПУ, измерение напряжения шума с включенным напряжением питания ФПУ и заданным временем накопления ФПУ,...
Тип: Изобретение
Номер охранного документа: 0002521150
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ed09

Способ сборки ик-фотоприемника

Изобретение относится к технологии гибридизации ИК-фотоприемника способом перевернутого монтажа (flip chip) и может быть использовано для выравнивания зазоров между кристаллами БИС и МФЧЭ, что приводит к увеличению надежности соединения и стойкости к термоциклированию соединения кристаллов, с...
Тип: Изобретение
Номер охранного документа: 0002526489
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.04ac

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n-фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Способ изготовления кремниевого фотодиода согласно изобретению включает операции термического окисления, диффузии фосфора для формирования областей n-типа...
Тип: Изобретение
Номер охранного документа: 0002532594
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.161f

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Согласно изобретению в способе изготовления кремниевых p-i-n фотодиодов для снижения концентрации электрически активных центров, создаваемых загрязняющими...
Тип: Изобретение
Номер охранного документа: 0002537087
Дата охранного документа: 27.12.2014
27.01.2015
№216.013.2097

Охлаждаемое основание фотоприемного устройства

Изобретение относится к системам охлаждения фотоприемных устройств. Охлаждаемое основание фотоприемного устройства выполнено из материала, имеющего одинаковый или близкий к охлаждаемому элементу коэффициент теплового расширения и для снижения неравномерности охлаждения через всю длину основания...
Тип: Изобретение
Номер охранного документа: 0002539791
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.26eb

Способ изготовления кремниевого p-i-n фотодиода

Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Они предназначены для использования в различной электронно-оптической аппаратуре, в которой требуется регистрация коротких импульсов лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002541416
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2ca2

Состав полирующего травителя для теллурида кадмия-ртути

Изобретение относится к области обработки поверхности теллурида кадмия-ртути химическим полирующим травлением. Состав полирующего травителя для теллурида кадмия-ртути включает компоненты при следующем соотношении, в объемных долях: метанол (95%) - 5, этиленгликоль - 13, бромистоводородная...
Тип: Изобретение
Номер охранного документа: 0002542894
Дата охранного документа: 27.02.2015
+ добавить свой РИД