×
10.10.2015
216.013.8133

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО НОСИТЕЛЯ КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения высокопористого носителя катализатора. Данный способ включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками, и раствор поливинилового спирта, сушку и обжиг с получением высокопористой блочно-ячеистой матрицы, обработку полученной высокопористой блочно-ячеистой матрицы алюмозолем, ее сушку, прокаливание и охлаждение с получением пористого носителя. При этом после охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера двух мономеров, первый из которых имеет по меньшей мере одну карбоксильную группу, а второй имеет по меньшей мере одну сульфогруппу, при этом концентрация сополимера в водном растворе составляет от 0.1 до 10 мас.%, а молекулярная масса сополимера составляет от 2 кДа до 20 кДа. Предлагаемый способ позволяет повысить рабочие характеристики носителя катализатора, заключающиеся в увеличении удельной площади поверхности и смачиваемости пор носителя суспензией, содержащей наночастицы каталитически активного вещества. 6 з.п. ф-лы, 2 пр.

Изобретение относится к области производства высокопористых керамических изделий с ячеистой структурой, которые могут использоваться в качестве носителей катализаторов для проведения каталитических жидкофазных гетерогенных процессов.

Эффективность катализатора зависит от общей площади поверхности каталитически активного вещества, находящегося в контакте со средой, в которой происходит каталитическая реакция.

Увеличение активной площади каталитической системы возможно двумя способами.

Первый способ заключается в уменьшении размеров частиц катализатора. Второй способ - в увеличении площади поверхности пористого носителя. Для достижения наибольшей эффективности каталитического реактора необходимо, чтобы оба компонента системы - и катализатор, и носитель имели высокую удельную площадь поверхности. Увеличение площади поверхности носителя достигается с помощью уменьшения размеров пор.

При использовании носителя с малым размером пор возникает следующая проблема: если суспензия недостаточно смачивает пористую структуру, то часть пор окажется не смоченной жидкостью. Таким образом, частицы катализатора не покроют всю площадь носителя и увеличение удельной площади носителя не приведет к увеличению активной площади каталитической системы, а следовательно, и к повышению эффективности катализа.

Из ′′Уровня техники′′ известен способ (см. патент РФ №2377224, кл. МПК C04B 38/06, опубл. 27.12.2009), в котором полиуретановую матрицу ячеистой структуры любой геометрической формы пропитывают шликером, состоящим из инертного наполнителя - электроплавленного корунда или смеси электроплавленного корунда и карбида кремния, дисперсного порошка оксида алюминия с добавками оксидов металлов II и IV групп таблицы Д.И. Менделеева и раствора поливинилового спирта (ПВС). Изделие высушивают, обжигают и получают блочное керамическое изделие (α-Al2O3) с открытой пористостью не ниже 70-95%. Изделие пропитывают алюмозолем γ-Al2O3 при рН 4,0±0,2, дополнительно сушат, обжигают при температуре 1550°C и более. Далее изделие пропитывают высокомолекулярным спиртом и проводят его пиролиз в среде инертного носителя, например азота, при температуре 350-550°C, высаживая на поверхности изделий пиролитический углерод. Массовое содержание углерода в изделии составляет до 10%. Недостатком известного способа является получение пористого носителя с небольшой удельной площадью поверхности и неудовлетворительной смачиваемостью части пор носителя суспензией, содержащей наночастицы каталитически активного вещества.

Кроме того, из ′′Уровня техники′′ известен способ изготовления высокопористых ячеистых керамических изделий путем пропитки полимерной матрицы шликером, состоящим из инертного наполнителя - электроплавленого корунда или смеси электроплавленого корунда и карбида кремния, дисперсного порошка оксида алюминия с добавками оксидов металлов II и/или IV групп таблицы Д.И. Менделеева и раствора поливинилового спирта, с последующей сушкой, обжигом для удаления органической составляющей и обработкой раствором алюмозоля при рН 4,0±0,2, с последующей дополнительной сушкой и обжигом при температуре более 1500°C. После чего изделия пропитывают водным раствором нитратов кобальта и железа под вакуумом 26-40 кПа при комнатной температуре, затем изделия прокаливают при 350-400°C, а после прокаливания на них высаживают углеродные нанотрубки, полученные пиролизом метана при температуре 770-800°C, до 0,10 мас.% от массы изделия (см. патент РФ №2475464, кл. МПК C04B 38/08, опубл. 20.02.2013).

Недостатками известного способа являются недостаточно высокие качества конечного продукта, обусловленные неудовлетворительной смачиваемостью части пор носителя суспензией, содержащей наночастицы каталитически активного вещества.

Задачей настоящего изобретения является устранение всех вышеуказанных недостатков.

Технический результат заключается в повышении рабочих характеристик высокопористого носителя катализатора, заключающихся в повышении удельной площади поверхности и увеличении смачиваемости пор носителя суспензией, содержащей наночастицы каталитически активного вещества. Технический результат обеспечивается тем, что способ получения высокопористого носителя катализатора включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками и раствор поливинилового спирта, сушку и обжиг с получением высокопористой блочно-ячеистой матрицы, обработку полученной высокопористой блочно-ячеистой матрицы алюмозолем, ее сушку, прокаливание, охлаждение с получением пористого носителя. После охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера двух мономеров, первый из которых имеет по меньшей мере одну карбоксильную группу, а второй имеет по меньшей мере одну сульфогруппу, при этом концентрация сополимера в водном растворе составляет от 0.1 до 10 массовых %, а молекулярная масса сополимера составляет от 2 кДа до 20 кДа. В соответствии с частными случаями осуществления способ имеет следующие особенности.

В качестве блочного сополимера используют сополимер акриловой кислоты и 2-акриламидо-2-метилпропан сульфокислоты с молярным соотношением мономеров от 0.5:1 до 10:1.

Обрабатывают водным раствором блочного водорастворимого сополимера поверхность пористого носителя, который представляет собой монолитный пористый носитель с удельной площадью поверхности пористой основы не менее 5 м2/г.

Обработку поверхности пористого носителя осуществляют его погружением в раствор блочного водорастворимого сополимера, а затем промывают пористый носитель деонизованной водой и сушат при комнатной температуре.

В качестве добавок к дисперсному порошку оксида алюминия используют оксиды магния и титана.

После пропитки ретикулированного пенополиуретана керамическим шликером осуществляют сушку при температуре 100-120°C, а затем проводят обжиг при температуре 1470-1510°C.

После обработки полученной высокопористой блочно-ячеистой матрицы алюмозолем ее сушат при температуре 100-120°C, а затем осуществляют прокаливание в воздушной среде при температуре 550-600°C.

Способ осуществляют следующим образом.

Пропитывают ретикулированный пенополиуретан керамическим шликером, содержащим инертный наполнитель, включающий электроплавленный корунд, дисперсный порошок оксида алюминия с добавками в виде оксидов магния и титана, и раствор поливинилового спирта.

Избыток шликера отжимают. После сушки при температуре 100-120°C и обжига 1470-1510°C получают высокопористую блочно-ячеистую матрицу (α-Al2O3) с открытой пористостью более 90%. Матрицу модифицируют, пропитывая ее алюмозолем (γ-Al2O3) при рН 4,0±0,2), сушат при температуре 100-120°C, а затем осуществляют прокаливание в воздушной среде при температуре 550-600°C.

Таким образом, получают монолитный пористый носитель с удельной площадью поверхности пористой основы не менее 5 м2/г.

После охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера двух мономеров, первый из которых имеет по меньшей мере одну карбоксильную группу, а второй имеет по меньшей мере одну сульфогруппу, при этом концентрация сополимера в водном растворе составляет от 0.1 до 10 массовых %, а молекулярная масса сополимера составляет от 2 кДа до 20 кДа.

В качестве блочного сополимера используют сополимер акриловой кислоты и 2-акриламидо-2-метилпропан сульфокислоты с молярным соотношением мономеров от 0.5:1 до 10:1.

Обработку поверхности пористого носителя осуществляют его погружением в раствор блочного водорастворимого сополимера, а затем промывают пористый носитель деонизованной водой и сушат при комнатной температуре.

Существенность отличий заявляемого изобретения заключается во включении дополнительного этапа, состоящего в обработке поверхности носителя раствором вышеупомянутого сополимера, позволяющего пропитывать суспензией с частицами каталитически активного вещества пористый носитель с малым размером пор за счет повышения смачиваемости поверхности носителя. Добавление сополимера не ухудшает конечные функциональные свойства частиц катализатора, так как органические вещества впоследствии удаляются из пор катализатора при отжиге. Принцип действия сополимера в качестве вещества, увеличивающего смачиваемость поверхности, основан на том, что сополимер включает как карбоксильные группы, которые прикрепляются к поверхности носителя, так и сульфогруппы, которые проявляют сильные гидрофильные свойства и увеличивают гидрофильность поверхности. При этом размер молекул полимера должен быть значительно меньше размеров пор, поэтому используют полимер с невысокой молекулярной массой (от 2 кДа до 20 кДа).

В результате проведенных исследований и испытаний предложенного способа установлено, что с использованием всех выбранных параметров в способе получен следующий положительный результат: реализована возможность пропитывать суспензией с каталитически активными частицами пористый носитель с малым размером пор за счет повышения смачиваемости поверхности пропитываемого носителя при сохранении конечных функциональных свойств частиц катализатора.

Ниже приведены примеры исполнения заявляемого способа.

Пример №1.

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим электрокорунд (50 мас.% дисперсность 24 мкм), более 30% мас., α-оксида алюминия с добавками оксидов магния и титана, методом циклического сжатия и растяжения с последующей сушкой при температуре 100°C и прокаливанием при температуре 1050°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся высокопористая блочно-ячеистая матрица имеет открытую пористость около 95%.

Затем полученную высокопористую блочно-ячеистую матрицу пропитывают алюмозолем (γ-Al2O3), сушат при температуре 110°C, прокаливают при температуре в воздушной среде 550°C. Таким образом, получают монолитный пористый носитель с удельной площадью поверхности пористой основы около 5 м2/г.

После охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера, в качестве которого используют сополимер акриловой кислоты и 2-акриламидо-2-метилпропан сульфокислоты. при этом концентрация сополимера в водном растворе составляет 10 массовых %, а молекулярная масса сополимера составляет от 2 кДа.Обработку поверхности пористого носителя осуществляют его погружением в раствор блочного водорастворимого сополимера, а затем промывают пористый носитель деонизованной водой и сушат при комнатной температуре.

Затем готовый пористый носитель пропитывают водными растворами нитрата церия (III), хлорида цирконила и нитрата редкоземельного элемента Pr(NO3)3·6H2O, смешанными в соотношении Ce:Zr:Pr=7,2:1,8:1, при температуре 55°C в течение одного часа, сушат при температуре 100°C в течение суток, прокаливают при температуре 500°C в течение двух часов.

Каталитическую активность полученного образца (катализатора) в реакции окисления СО исследовали проточным методом. В U-образный кварцевый реактор загружали 1 см3 катализатора. Измерения каталитической активности проводили при объемной скорости газовой смеси 1800 ч-1 в интервале температур 100-400°C. Модельная газовая смесь имела следующий состав (об.%): СО-3,6; O2-8,0; N2-88,4. Измерение концентраций оксида углерода (II) и кислорода проводили газохроматографическим методом.

При температуре 280°C степень конверсии равна 100%.

Таким образом, при использовании изготовленного с помощью настоящего способа носителя удалось получить многофункциональный катализатор, способный функционировать при высоких температурах, имеющий большую площадь поверхности нанесенного каталитического слоя и равномерно распределенный по площади носителя каталитически активный слой.

Пример №2.

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим электрокорунд (50 мас.% дисперсность 24 мкм), более 30% мас., α-оксида алюминия с добавками оксидов магния и титана, методом циклического сжатия и растяжения с последующей сушкой при температуре 120°C и прокаливанием при температуре 1060°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся высокопористая блочно-ячеистая матрица имеет открытую пористость 90%.

Затем полученную высокопористую блочно-ячеистую матрицу пропитывают алюмозолем (γ-Al2O3), сушат при температуре 110°C, прокаливают в воздушной среде при температуре 570°C. Таким образом, получают монолитный пористый носитель с удельной площадью поверхности пористой основы около 5 м2/г.

После охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера, в качестве которого используют сополимер акриловой кислоты и 2-акриламидо-2-метилпропан сульфокислоты, при этом концентрация сополимера в водном растворе составляет 5 массовых %, а молекулярная масса сополимера составляет от 10 кДа.

Обработку поверхности пористого носителя осуществляют его погружением в раствор блочного водорастворимого сополимера, а затем промывают пористый носитель деонизованной водой и сушат при комнатной температуре (25°C).

Далее пористый носитель пропитывают водными растворами нитрата церия (III), хлорида цирконила и нитрата редкоземельного элемента Sm(NO3)3·6H2O, смешанными в соотношении Ce:Zr:Sm=7,2:1,8:1 при температуре 55°C в течение одного часа, сушат при температуре 100°C в течение суток, прокаливают при температуре 500°C в течение двух часов.

Каталитическую активность полученного образца (катализатора) в реакции окисления СО исследовали проточным методом, как в примере 1.

При температуре 293°C степень конверсии равна 100%.

Таким образом, при использовании изготовленного с помощью настоящего способа носителя удалось получить многофунщиональный катализатор, способный функционировать при высоких температурах, имеющий большую площадь поверхности нанесенного каталитического слоя и равномерно распределенный по площади носителя каталитически активный слой.

Источник поступления информации: Роспатент

Показаны записи 31-39 из 39.
25.08.2017
№217.015.b77a

Способ интуитивно копирующего управления одноковшовым экскаватором

Изобретение относится к области машиностроения, может быть использовано в ручных гидравлических системах управления подвижными наземными, авиационными и морскими объектами и предназначено для формирования посредством гидрораспределителей команд по четырем каналам управления для одноковшовых...
Тип: Изобретение
Номер охранного документа: 0002614866
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bdce

Способ получения металлического лития с использованием продуктов переработки природных рассолов

Изобретение относится к получению металлического лития. Способ включает подготовку шихты из безводных бромида и хлорида лития, расплавление шихты с получением расплава эвтектической смеси, содержащей 90 мас.% бромида лития и 10 мас.% хлорида лития, электролиз полученного расплава эвтектической...
Тип: Изобретение
Номер охранного документа: 0002616749
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be0c

Способ переработки германийсодержащего сырья

Изобретение относится к способу переработки германийсодержащего сырья, в котором в качестве германийсодержащего сырья используют уголь или лигнит. Первоначально проводят высокоскоростную вихревую термоактивацию исходного сырья при 120-220°C продуктами сжигания генераторного газа при 600-800°C и...
Тип: Изобретение
Номер охранного документа: 0002616750
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be37

Способ переработки германийсодержащего сырья

Изобретение относится к способу переработки германийсодержащего сырья, в качестве которого используют уголь или лигнит. Термическую обработку сырья проводят в две стадии для извлечения дополнительно к германию иттрия и скандия. Первоначально проводят пиролиз в инертной среде при температуре...
Тип: Изобретение
Номер охранного документа: 0002616751
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.e0ea

Трубчатый элемент электрохимического устройства с тонкослойным твердооксидным электролитом (варианты) и способ его изготовления

Изобретение относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым оксидным электролитом, таким как электрохимические генераторы или топливные элементы, кислородные насосы, электролизеры, конвертеры, а именно к конструкции трубчатого элемента с тонкослойным несущим...
Тип: Изобретение
Номер охранного документа: 0002625460
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e36c

Акустический анализатор для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах

Использование: для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что акустический анализатор содержит вычислительный блок и измерительную ячейку, в которой установлены акустический измеритель,...
Тип: Изобретение
Номер охранного документа: 0002626214
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.f86d

Способ изготовления композитного катодного материала

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка...
Тип: Изобретение
Номер охранного документа: 0002639719
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f9f3

Способ автоматического ограничения скорости автомобиля

Изобретение относится к технике автоматического управления ограничением скорости движения транспортных средств. При осуществлении способа автоматического ограничения скорости автомобиля задают допускаемую скорость движения. Сравнивают с допускаемой скоростью движения фактическую скорость...
Тип: Изобретение
Номер охранного документа: 0002639934
Дата охранного документа: 25.12.2017
04.04.2018
№218.016.2f08

Композиция для химического серебрения керамических материалов

Изобретение предназначено для химического серебрения керамических материалов. Композиция для химического серебрения керамических материалов содержит нитрат серебра, глюкозу, гидроксид калия, оксиэтилендифосфоновую кислоту, нитрат церия при следующем содержании компонентов, г/л: нитрат серебра –...
Тип: Изобретение
Номер охранного документа: 0002644462
Дата охранного документа: 12.02.2018
Показаны записи 61-65 из 65.
07.06.2020
№220.018.253d

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения...
Тип: Изобретение
Номер охранного документа: 0002722961
Дата охранного документа: 05.06.2020
12.06.2020
№220.018.26a4

Способ аддитивного изготовления объемных микроразмерных структур из наночастиц

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы...
Тип: Изобретение
Номер охранного документа: 0002723341
Дата охранного документа: 09.06.2020
11.05.2023
№223.018.53e1

Способ получения катализатора полного окисления метана на основе lnfesbo (ln=la-sm) со структурой розиаита

Изобретение относится к области гетерогенного катализа, конкретно к катализаторам окисления метана на основе сложных оксидов с нанесенными наночастицами благородных металлов, обладающим улучшенными каталитическими характеристиками, и может быть использовано в процессе очистки промышленных...
Тип: Изобретение
Номер охранного документа: 0002795468
Дата охранного документа: 03.05.2023
22.05.2023
№223.018.6b50

Двухслойное прозрачное проводящее покрытие и способ его получения

Изобретение относится к оптоэлектронике и предназначено для получения прозрачных проводящих покрытий методом микроплоттерной печати. Изобретение может быть использовано при создании оптоэлектронных устройств, таких как фотодетекторы и органические светодиоды. Прозрачное проводящее покрытие...
Тип: Изобретение
Номер охранного документа: 0002795822
Дата охранного документа: 11.05.2023
17.06.2023
№223.018.81b7

Спрей для лечения инфицированных и неинфицированных ран при сахарном диабете i типа

Изобретение относится к области медицины и фармацевтики и может быть использовано для лечения инфицированных и неинфицированных ран при сахарном диабете I типа. Для этого предложен спрей, содержащий в качестве активных ингредиентов 2-этил-6-метил-3-гидроксипиридиния N-ацетил-6-аминогексаноат,...
Тип: Изобретение
Номер охранного документа: 0002790837
Дата охранного документа: 28.02.2023
+ добавить свой РИД