×
20.09.2015
216.013.7b07

Результат интеллектуальной деятельности: СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Способ организации детонационно-дефлаграционного горения в воздушно-реактивном двигателе для высоких скоростей полета заключается в том, что набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника, по мере продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, но большей, чем скорость ударной волны, возникающей при гашении детонационной волны. Через топливные сопла непрерывно подают топливо, смешивают его с воздухом и создают непрерывный поток горючей смеси, имеющей зону недостаточного смешения в зоне топливных сопел и зону хорошо перемешанной горючей смеси, расположенную ниже по течению потока. Воспламеняют хорошо перемешанную горючую смесь. Образующуюся при этом детонационную волну, движущуюся против потока, гасят в зоне недостаточного смешения с образованием ударной волны и очагов дефлаграционного горения, сносимых потоком вниз по течению. Воспламеняют хорошо перемешанную горючую смесь указанными очагами дефлаграционного горения, и инициируют новую детонационную волну, распространяющуюся против потока, реализуя тем самым переход от дефлаграционного горения к детонационному. В результате обеспечивается процесс детонационно-дефлаграционного горения с частотой пульсаций, определяемой скоростями детонационной волны и сверхзвукового потока. Изобретение направлено на упрощение конструкции и функционирование пульсаций детонационной волны без механических или газодинамических клапанов при непрерывной подаче топлива. 2 н.п. ф-лы, 2 ил.

Изобретение относится к пульсирующим детонационным воздушно-реактивным двигателям. Более точно изобретение касается способа организации детонационно-дефлаграционного горения и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя, который не использует при создании пульсации механических клапанов или газодинамическое перекрытие топливных каналов.

Известен способ организации детонационного режима горения в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя (патент РФ №2285143, опубл. 10.10.2006), который включает подачу топливо-воздушной газовой смеси в камеру сгорания двигателя, генерирование внутренних ударных волн в проточной части камеры сгорания, формируемых регулируемыми элементами камеры сгорания. В проточной части камеры сгорания создают систему симметричных наклонных падающих ударных волн. В центральной части поперечного сечения камеры сгорания в результате взаимодействия этих волн друг с другом формируется пересжатая детонационная волна - ножка Маха с возможностью регулирования ее размера и местоположения в проточной части камеры сгорания. Размер ножки Маха, а тем самым и ее положение в продольном направлении камеры сгорания, а также и ее стационарность, задают посредством изменения геометрических параметров регулирующих элементов камеры сгорания в зависимости от числа Маха потока на входе в камеру сгорания и химического состава поступающей топливо-воздушной газовой смеси.

Известен сверхзвуковой пульсирующий детонационный прямоточный (СПДПД) воздушно-реактивный двигатель (СПДВРД) (патент РФ №2157909, опубл. 20.10.2000), который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя и систему подачи топлива. Система подачи топлива содержит пилоны с соплами и клапаны изменения режима подачи топлива. Известен способ функционирования этого сверхзвукового пульсирующего детонационного прямоточного воздушно-реактивного двигателя при котором в момент запуска двигателя подают топливо и инициируют детонационную волну, дальнейшую работу двигателя обеспечивают последовательно-периодически, изменяя подачу топлива, реализуя в камере сгорания богатую и бедную топливо-воздушную смесь и вызывая изменения направления и скорости перемещения детонационной волны относительно камеры сгорания от ее выхода ко входу по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока топлива.

Известен пульсирующий детонационный прямоточный воздушно-реактивный двигатель (патент РФ №2476705, опубл. 27.02.2013), который содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выхлопное сверхзвуковое сопло, воспламенитель топливо-воздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения. Двигатель также содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта. Пилоны системы подачи топлива размещены на выходе из последнего. Воспламенитель топливо-воздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Сопла системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия.

В известных технических решениях детонационное горение организуют изменением подачи топлива в прямоточный воздушно-реактивный двигатель. Пульсацию детонационной волны организуют изменением подачи топлива, для чего используют механические клапаны или газодинамическое перекрытие топливных каналов. «Газодинамический клапан» - ударная волна, которая на каждом цикле, полностью прервав подачу топлива, что уменьшает тягу, движется к воздухозаборнику и может нарушить его работу.

В основу изобретения положена задача упрощения конструкции детонационного пульсирующего прямоточного воздушно-реактивного двигателя путем создания детонационно-дефлаграционного горения и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя.

Техническим результатом является функционирование пульсации детонационной волны без механических или газодинамических клапанов при непрерывной подаче топлива и недопущение (благодаря подбору степени торможения высокоскоростного потока в воздухозаборнике) возникающей при этом ударной волны до топливных сопел и воздухозаборника. Другими техническими результатами являются повышение тяги за счет непрерывного поступления топлива и высокая частота процесса, определяемая большими скоростями детонационной волны и сверхзвукового потока, сносящего очаги медленного горения.

Поставленная задача решается тем, что организуют детонационно-дефлаграционное горение в воздушно-реактивном двигателе для высоких скоростей полета, для чего набегающий высокоскоростной сверхзвуковой поток воздуха тормозят в криволинейном пространстве воздухозаборника по мере его продвижения, в зоне образования скорости, меньшей, чем скорость детонационной волны, возникающей при горении, непрерывно подают топливо, которое смешивают с воздухом, и создают непрерывный поток горючей смеси, имеющий зону недостаточного смешения с образованием «бедной» смеси в области ввода топлива и хорошо перемешанную горючую смесь в зоне, расположенной ниже по течению потока, воспламеняют хорошо перемешанную горючую смесь, образующуюся при этом детонационную волну, движущуюся со скоростью выше скорости потока горючей смеси и распространяющуюся вместе с ударной волной против потока, гасят при поступлении в зону недостаточного смешения за счет самогашения в «бедной» смеси, а очаги медленного дефлаграционного горения, возникающие при гашении и сносимые набегающим потоком вниз по течению, попадают в хорошо перемешанную горючую смесь, воспламеняют ее и инициируют новую детонационную волну, распространяющуюся против потока, реализуя переход от дефлаграции к детонации, в результате чего организуется пульсирующий процесс детонационно-дефлаграционного горения с высокой частотой, определяемой большими скоростями детонационной волны и сверхзвукового потока, до топливных сопел и воздухозаборника.

Целесообразно, если топливо подают в зоне образования скорости, сравнительно больших чисел Маха (М=3-4).

Поставленная задача решается также тем, что детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель для высоких скоростей полета, включает последовательно размещенные сверхзвуковой воздухозаборник, систему подачи топлива с пилонами и звуковыми или сверхзвуковыми соплами, сверхзвуковые камеры смешения и сгорания и выхлопное сопло, которые конструктивно приспособлены для реализации вышеуказанного способа организации детонационно-дефлаграционного горения.

Целесообразно чтобы топливные сопла были расположены на входе камеры смешения и выполнены открытыми для постоянной подачи топлива в поток с требуемым расходом, а сверхзвуковая скорость потока в камере смешения выполнена с расчетом на сверхзвуковую скорость потока, при которой ударная волна, возникающая при погасании детонационной волны после ее попадания в зону недостаточно смешанной горючей смеси, не доходит до топливных пилонов и до воздухозаборника, а воздухозаборник выполнен так, что его контур тормозит набегающий высокоскоростной поток воздуха до чисел Маха (М=3-4) и скорости, которая меньше скорости детонационной волны, но больше скорости ударной волны, возникающей при погасании детонационной волны.

В дальнейшем изобретение поясняется описанием и фигурами, где на фиг.1 и фиг.2 соответственно приведены принципиальные общая и внутренняя схемы детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя предназначенного для осуществления способа, согласно изобретению.

Далее приведен пример выполнения способа и детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя для осуществления способа.

Способ организации детонационно-дефлаграционного горения, согласно изобретению, может быть реализован в пульсирующем детонационно-дефлаграционном прямоточном воздушно-реактивном двигателе для высоких скоростей полета, который содержит последовательно размещенные сверхзвуковой воздухозаборник 1, систему 2 подачи топлива с пилонами и соплами, сверхзвуковые камеры смешения 3 и сгорания 4, и выхлопное сверхзвуковое сопло 7.

Топливные сопла размещены в начале камеры смешения 3. Воспламенитель горючей смеси 6 размещен в конце камеры сгорания 4 в поперечной нише 5 и предназначен для запуска.

Согласно изобретению, в сверхзвуковой поток воздуха после воздухозаборника 1, тормозящего высокоскоростной набегающий поток, из звуковых или сверхзвуковых топливных сопел системы 2 непрерывно подают в топливо и смешивают его с воздухом в камере смешения 3. Это создает непрерывный поток горючей смеси, имеющий зону недостаточного смешения с образованием «бедной» смеси в области ввода топлива (у топливных сопел системы 2) и хорошо перемешанную горючую смесь в зоне, расположенной ниже по течению потока. Хорошо перемешанную горючую смесь первично воспламеняют воспламенителем 6. При воспламенении организуется процесс горения с образованием ударных (УВ) и детонационных волн (ДВ). Образующаяся детонационная волна движется со скоростью выше скорости потока горючей смеси и распространяется вместе с ударной против потока. При поступлении в зону недостаточного смешения (у топливных сопел системы 2) детонационную волну гасят за счет ее самогашения в «бедной» смеси. Образуется волна разряжения (BP), контактный разрыв (КР) и фронт медленного горения (ФГ). Очаги медленного дефлаграционного горения, возникающие при гашении, набегающий поток горючей смеси сносит их вниз по течению, где они попадают в хорошо перемешанную горючую смесь, воспламеняют ее и инициируют новую детонационную волну, распространяющуюся против потока, реализуя переход от дефлаграции к детонации, в результате чего организуется пульсирующий процесс детонационно-дефлаграционного горения с высокой частотой, определяемой большими скоростями детонационной волны и сверхзвукового потока, до топливных сопел и воздухозаборника.

Целесообразно, если топливо подают в зоне образования скорости, сравнительно больших чисел Маха (М=3-4).

Детонационная волна (ДВ) гаснет при попадании в зону недостаточного смешения, возникающая при этом ударная волна (УВ) не может преодолеть сверхзвуковой поток и дойти до топливных сопел и воздухозаборника. Детонационная волна (ДВ) движется по камере сгорания 4 и части камеры смешения 3. При поступлении в зону недостаточного смешения происходит самогашение детонационной волны за счет попадания в «бедную» смесь.

Прохождению ударной волны в воздухозаборник 1 препятствует сверхзвуковой поток в камере смешения 3 со специально подобранным числом Маха. Благодаря подбору степени торможения высокоскоростного потока в воздухозаборнике 1 возникающая при гашении ударная волна не доходит до топливных сопел и воздухозаборника.

Двигатель приспособлен для осуществления способа известными расчетными средствами с помощью изменения геометрических параметров регулирующих элементов камеры сгорания в зависимости от числа Маха потока на входе в камеру сгорания и химического состава поступающей топливо-воздушной газовой смеси и экспериментами (см.: 1. Нетлетон М. Детонация в газах / Под ред. Л.Г. Гвоздевой. М.: Мир, 1989. С.15, 33-39; 2. Митрофанов В.В. Детонация гомогенных и гетерогенных систем. Новосибирск: ИГЛ СО РАН, 2003. 199 с.; 3. Васильев А.А. Особенности применения детонации в двигательных установках. С.129, 141-145; 4. Левин В.А. и др. Инициирование газовой детонации электрическими разрядами. С.235-254; 5. Быковский Ф.А. и др. Инициирование детонации в потоках водородно-воздушных смесей. С.521-539 / Импульсные Детонационные Двигатели. Под ред. С.М. Фролова. М.: Торус-Пресс, 2006. 592 с.).

В случае наилучшего выполнения, топливные сопла системы 2 были расположены на входе камеры смешения 3 и выполнены открытыми для постоянной подачи топлива в поток с требуемым расходом. Сверхзвуковая скорость потока в камере смешения 3 выполнена с расчетом на сверхзвуковую скорость потока, при которой ударная волна, возникающая при погасании детонационной волны после ее попадания в зону недостаточно смешанной горючей смеси, не доходит до топливных пилонов и до воздухозаборника 1. Воздухозаборник 1 выполнен так, что его контур тормозит набегающий высокоскоростной поток воздуха до чисел Маха (М=3-4) и скорости, которая меньше скорости детонационной волны, но больше скорости ударной волны, возникающей при погасании детонационной волны.

Такая конструкция расширяет диапазон скоростей полета летательного аппарата до чисел Маха 5-8.

Способ функционирования детонационно-дефлаграционного пульсирующего прямоточного воздушно-реактивного двигателя для высоких скоростей полета состоит в том, что на вход сверхзвуковой камеры смешения 3 через сверхзвуковой воздухозаборник 1 подают воздух, а через топливные сопла системы 2 - топливо. За соплами в сверхзвуковой камере смешения 3 формируют горючую смесь, направляют ее в камеру сгорания 4 и заполняют нишу 5. В нише воспламенителем 6 инициируют первичное воспламенение и горение смеси, переходящее в детонацию. Дальнейшую работу двигателя обеспечивают, направив возникшую детонационную волну против потока за счет выбора его сверхзвуковой скорости меньшей, чем скорость детонационной волны. После прихода в зону недостаточного смешения вблизи топливных сопел детонационная волна гаснет, порождая ударную волну, которая движется против потока со скоростью, меньшей скорости сверхзвукового потока. Потоком сносит контактный разрыв с близкими к нему очагами медленного горения и волну разрежения. Возникшие при погасании детонационной волны очаги медленного горения поток сносит в зону хорошего смешения, где образуется «богатая» горючая смесь. При работе двигателя на «богатой» горючей смеси очаги образуют сплошной фронт, реализуют переход от дефлаграции к детонации, обеспечивая периодичность процесса. Таким образом, детонационная волна всегда движется против потока между сечением перехода от дефлаграции к детонации (сечение УВ) и сечением недостаточно перемешанной смеси вблизи топливных сопел системы 2, где существование детонационной волны невозможно.

В обеспечение исследований по детонационным двигателям создана экспериментальная установка, моделирующая работу камер смешения и сгорания в режиме «присоединенного трубопровода» (требуемый сверхзвуковой поток воздуха на входе в камеры смешения или сгорания создает сверхзвуковое сопло). При моделировании на ней работы предлагаемого способа обнаружено, что при постоянной подаче водородного топлива для коэффициентов избытка воздуха от 1 до 1.4 пульсирующий процесс с гаснущими и вновь возникающими идущими против потока детонационными волнами реализуется. Реализуется устойчивый пульсирующий режим работы, заведомо более высокочастотный, чем в СПДВРД.

Для рабочего процесса можно ожидать высоких топливной экономичности, полноты сгорания и температуры продуктов сгорания.

При числах Маха полета М=5-8 реализуемый процесс горения требует меньшего, чем в ПВРД (прямоточном воздушно-реактивном двигателе) и СПВРД (ПВРД со сверхзвуковым горением) торможения потока (до М=3-4 на выходе из воздухозаборника), снижая теплонапряженность тракта двигателя.

Таким образом, предлагаемое изобретение при отсутствии обеспечивающих пульсирующий режим работы двигателя механических клапанов:

расширяет диапазон скоростей полета летательных аппаратов до чисел Маха М=5-8;

при числах Маха полета М=5-8 уменьшает теплонапряженность тракта двигателя;

обеспечивает постоянство расхода топлива и недопущение до воздухозаборника ударных волн, движущихся против потока.


СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННОГО ГОРЕНИЯ И ДЕТОНАЦИОННО-ДЕФЛАГРАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 221.
03.07.2018
№218.016.69db

Устройство для анализа динамических процессов в рабочих колесах турбомашин

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме...
Тип: Изобретение
Номер охранного документа: 0002659428
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.69f5

Рабочая жидкость для гидравлических систем

Изобретение относится к рабочим (гидравлическим) жидкостям и может быть использовано в областях техники, требующих применения в гидросистемах рабочих жидкостей с большим диапазоном рабочих температур и обладающих повышенной пожаробезопасностью, в частности, в авиационной технике. Рабочая...
Тип: Изобретение
Номер охранного документа: 0002659393
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.6a00

Рабочее колесо компрессора газотурбинного двигателя

Изобретение относится к авиационному двигателестроению, в частности к осевым компрессорам авиационных газотурбинных двигателей. Рабочее колесо осевого компрессора газотурбинного двигателя содержит диск с конусообразной наружной поверхностью, ориентированной меньшим основанием к входному торцу...
Тип: Изобретение
Номер охранного документа: 0002659416
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.6a15

Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления

Изобретение относится к устройствам для наполнения сосудов высокого давления газами и предназначено для автономного использования. Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления включает резервуар криогенной жидкости, насос,...
Тип: Изобретение
Номер охранного документа: 0002659414
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a40

Способ изготовления изделий из трубных заготовок

Изобретение относится к способу изготовления изделия из трубных заготовок и может быть использовано в технологических процессах изготовления теплообменных панелей методом лазерной сварки. Охлаждают их по объему путем подачи охлаждающей жидкости в полости свариваемых заготовок до момента...
Тип: Изобретение
Номер охранного документа: 0002659539
Дата охранного документа: 02.07.2018
05.07.2018
№218.016.6bff

Устройство для измерения температуры в газовом потоке

Изобретение относится к области измерительной техники и может быть использовано для диагностики технического состояния газотурбинных двигателей в процессе их разработки, производства и испытаний. Заявленное устройство для измерения температуры в газовом потоке содержит камеру с оптически...
Тип: Изобретение
Номер охранного документа: 0002659723
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6c53

Водонагревательное устройство и способ его работы

Изобретение относится к области энергетики, а именно к водонагревательному устройству и способу его работы, и может быть использовано в аппаратах с погружным горением при нагреве воды. Водонагревательное устройство содержит бак с днищем и крышкой, вертикальную камеру сгорания, установленную в...
Тип: Изобретение
Номер охранного документа: 0002659711
Дата охранного документа: 03.07.2018
09.08.2018
№218.016.7910

Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях

Изобретение относится к области испытаний высокоскоростных летательных аппаратов с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях. Сущность изобретения состоит в...
Тип: Изобретение
Номер охранного документа: 0002663320
Дата охранного документа: 03.08.2018
28.08.2018
№218.016.7ff8

Способ регулирования водности в имитируемом атмосферном облаке

Изобретение относится к области сертификационных испытаний авиационной техники и, в частности, к технологии имитации атмосферного облака, а также имитации перемежающейся облачности при испытаниях противообледенительных систем основных узлов летательного аппарата и его двигателя на наземных...
Тип: Изобретение
Номер охранного документа: 0002664932
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.8010

Двухконтурная горелка

Изобретение относится к теплоэнергетике и может быть использовано для непрерывного пламенного сжигания подготовленных топливовоздушных смесей газообразного углеводородного топлива в камерах сгорания газотурбинных установок. Двухконтурная горелка для камеры сгорания газотурбинной установки...
Тип: Изобретение
Номер охранного документа: 0002665009
Дата охранного документа: 24.08.2018
Показаны записи 111-120 из 120.
17.04.2019
№219.017.1626

Реактивное сопло с регулируемой высотностью

Изобретение относится к области ракетостроения, а более конкретно к реактивным соплам с регулируемой высотностью. В реактивном сопле с регулируемой высотностью, содержащем в сверхзвуковой части одну или несколько кольцевых щелей, перекрываемых секторными заслонками, шарнирно закрепленными по...
Тип: Изобретение
Номер охранного документа: 0002322607
Дата охранного документа: 20.04.2008
19.04.2019
№219.017.2e2d

Способ изготовления пластин для теплообменников

Изобретение предназначено для производства плоских заготовок для теплообменников с рельефом заданной формы на одной из сторон пластины. Способ включает продольную горячую прокатку в горизонтальных валках. Возможность получения заготовок для теплообменников заданной формы высокой точности по...
Тип: Изобретение
Номер охранного документа: 0002393932
Дата охранного документа: 10.07.2010
09.05.2019
№219.017.4c93

Осевой компрессор для транспортировки природного газа

Изобретение относится к компрессоростроению и используется для транспортировки природного газа. Осевой компрессор для транспортировки природного газа содержит корпус с лопатками направляющих аппаратов и ротор с рабочими лопатками. Задачей предлагаемого изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002312254
Дата охранного документа: 10.12.2007
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
09.06.2019
№219.017.7ac9

Способ подготовки под пайку поверхности детали из высокопрочной стали, легированной ванадием, молибденом и вольфрамом

Изобретение может быть использовано при пайке сборочных единиц, состоящих из тонкостенных деталей из высокопрочных сталей, в частности, в авиационной и космической технике. Деталь нагревают при температуре от 900°С до 1000°С в течение от 3 до 8 минут. Проводят последующее разрыхление...
Тип: Изобретение
Номер охранного документа: 0002355527
Дата охранного документа: 20.05.2009
19.06.2019
№219.017.868e

Шумоглушащее сопло воздушно-реактивного двигателя (варианты)

Изобретение относится к области авиации, в частности к соплам летательных аппаратов с устройствами для снижения шума струи воздушно-реактивного двигателя. Предложено три варианта шумоглушащего сопла. В первом варианте канал сужающегося плоского сопла воздушно-реактивного двигателя с вырезами на...
Тип: Изобретение
Номер охранного документа: 0002313680
Дата охранного документа: 27.12.2007
19.06.2019
№219.017.896d

Пилон - автовоспламенитель топлива

Изобретение относится к прямоточным воздушно-реактивным двигателям. Пилон содержит переднее и заднее тела аэродинамического профиля. Тела пилона выполнены трубчатыми. Пилон содержит, по меньшей мере, две трубки, расположенные одна за другой с закругленной передней кромкой. Трубки одним концом...
Тип: Изобретение
Номер охранного документа: 0002428576
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.aead

Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя

Изобретение относится к ракетной технике, к способу изготовления сопла камеры сгорания жидкостного ракетного двигателя. Способ изготовления сварно-паяной конструкции крупногабаритного сопла камеры жидкостного ракетного двигателя, состоящего из соединенных между собой стальных внутренней и...
Тип: Изобретение
Номер охранного документа: 0002323363
Дата охранного документа: 27.04.2008
15.05.2023
№223.018.57b1

Установка для газодинамических испытаний

Изобретение относится к испытаниям авиационной и ракетной техники. Установка для газодинамических испытаний содержит испытательную камеру (1) и генератор (7) газового потока. В генераторе (7) газового потока установлен эжектор (25), имеющий канал (26) активной среды первой ступени со...
Тип: Изобретение
Номер охранного документа: 0002767554
Дата охранного документа: 17.03.2022
16.06.2023
№223.018.7c5d

Способ коррекции математической модели жидкостного ракетного двигателя

Изобретение относится к ракетно-космической области, в частности к жидкостным ракетным двигателям (ЖРД), и предназначено для построения математической модели конкретного экземпляра двигателя, применяемой при повторных огневых испытаниях. Способ основан на использовании текущих измеренных в...
Тип: Изобретение
Номер охранного документа: 0002749497
Дата охранного документа: 11.06.2021
+ добавить свой РИД