×
10.09.2015
216.013.797f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Согласно способу для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t). Причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величины Ux(t)·[Uy(t)-Uy(t)]. Среднее за интервал времени n·dt значение частоты F(t) в момент времени t определяют по формуле , где n - целое значение. Технический результат заключается в повышении точности определения частоты трехфазного напряжения. 3 ил.
Основные результаты: Способ определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величиныUx(t)·[Uy(t)-Uy(t)],определяют среднее за интервал времени n·dt значение частоты F(t) в момент времени t по формуле: , где n - целое значение.

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях.

Известен способ определения частоты при помощи цифрового измерителя частоты (Патент 1290190 РФ, МПК G01R 23/00. 1987, бюл. №6). Цифровой измеритель частоты содержит формирователь интервала измерения, генератор образцовых частот, счетчики импульсов, сумматор, блок индикации, элемент задержки, RS-триггер, ключ, регистр, D-триггер, двухвходовой элемент И.

Недостатком способа определения частоты и измерителя является значительное время усреднения (счета), необходимое для получения требуемой точности измерений.

К аналогам предлагаемого технического решения также относится способ измерения частоты при помощи устройства для измерения частоты синусоидального сигнала (Патент РФ №2169927, МКП G01R 23/00, 2001, бюл. №18). Устройство для измерения частоты синусоидального сигнала содержит генератор импульсов, распределитель импульсов, счетчик импульсов, регистр, цифровые индикаторы, входной формирователь импульсов, выпрямитель, n входных формирователей импульсов, (n+1) выходных формирователей импульсов, источник опорных напряжений, элемент ИЛИ.

Недостатками данного способа измерения частоты и устройства являются значительное время измерения, а также невысокая точность.

Прототипом является способ измерения частоты трехфазного напряжения при помощи устройства измерения частоты (US №8190387 B2, МПК G01R 23/00, 29.05.2012), предназначенный для измерения промышленной частоты 50 или 60 герц, в котором подсчитывается амплитуда переменного напряжения U(t) методом действующего значения, длину хорды, соединяющей вершины вектора напряжения U(t) в момент времени t и вектора напряжения U(t+dt) в момент времени (t+dt) с помощью метода действующего значения, фазовый угол dφ поворота вектора напряжения U(t) за время dt, откуда подсчитывают частоту F(t), вычисляют динамическую частоту для определения скорости изменения частоты для каждого шага dt.

Недостатком данного способа и устройства является то, что для определения фазового угла dφ поворота вектора напряжения U(t) за время dt используется одно напряжение U(t) промышленной частоты и используется метод действующего значения для подсчета амплитуды и длины хорды данного напряжения. При определении амплитуды и хорды метод действующего значения корректно работает только для сигнала, имеющего форму идеальной синусоиды. При любом отклонении формы сигнала напряжения U(t) от синусоидальной метод действующего значения будет давать ошибку.

Задача, решаемая изобретением, - повышение точности определения частоты трехфазного напряжения за счет отказа от метода действующего значения, а также использование для определения частоты сигналов всех трех фаз промышленного трехфазного напряжения.

Указанный технический результат достигается благодаря тому, что в способе определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<<T, согласно изобретению определяют проекцию Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

определяют проекцию Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяют модуль вращающегося поля U(ti):

,

определяют зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1,)]},

определяют знак dcpj по следующему алгоритму:

- Если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

- Если |Ux(ti)|>|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)],

определяют среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Существенным отличием предлагаемого технического решения является то, что весь процесс определения частоты производится в цифровом виде, используя выходные цифровые сигналы Ua(ti), Ub(ti), Uc(ti) АЦП, на вход которого подаются три фазы Ua, Ub, Uc промышленного трехфазного напряжения, где i - целое значение, измеренные в моменты времени ti, оцифрованные с периодом дискретизации dt=(ti-ti-1), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения dt<<T.

Предлагаемый способ определения частоты трехфазного напряжения поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В(2), С(3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3 создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Y (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем.

Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период T частоты F=1/T. Подсчитав скорость изменения угла φ (14), найдем частоту F трехфазного напряжения Ua (7), Ub (8), Uc (9).

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2.

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y).

Для определения частоты F трехфазного напряжение Ua (7), Ub (8), Uc (9) в микропроцессорных терминалах используются цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti-1). Причем величина dt значительно меньше периода T наибольшей частоты Fb=1/T диапазона измерения частоты F, dt<<T.

В каждый момент времени ti определяется проекция Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

,

определяется проекция Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяется модуль вращающегося поля U(ti):

,

определяется зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1)]}

Приращение dφi, вычисляемое с использованием тригонометрической функции arcos(), будет всегда положительным. Поэтому для определения знака dφi проведем дополнительные вычисления.

если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

если |Ux(ti)|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)].

Для повышения точности измерения частоты F(ti) определяется среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Предлагаемый способ определения частоты трехфазного напряжения будет работать всегда, когда трехфазное напряжение формирует вращающееся поле, и не будет работать, если вращающееся поле не формируется (например, при потере двух фаз напряжения из трех).

Таким образом, предлагаемый способ определения частоты трехфазного напряжения позволяет за короткий интервал времени определить частоту трехфазного напряжения, которое непосредственно вращает роторы двигателей. При этом за счет использования всех трех фаз промышленного напряжения 50 герц повышается точность измерения частоты.

Способ определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величиныUx(t)·[Uy(t)-Uy(t)],определяют среднее за интервал времени n·dt значение частоты F(t) в момент времени t по формуле: , где n - целое значение.
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 166.
27.10.2014
№216.013.01ea

Электрический чайник

Изобретение относится к кухонной посуде для кипячения воды, а именно к чайникам. Электрический чайник содержит корпус, нагревательный элемент, соединенный с блоком управления. В него введен сосуд с двойными стенками и вакуумом между ними, а также отражатель, при этом указанный сосуд является...
Тип: Изобретение
Номер охранного документа: 0002531888
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0be8

Метеодатчик системы контроля температуры

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью...
Тип: Изобретение
Номер охранного документа: 0002534456
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d08

Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием...
Тип: Изобретение
Номер охранного документа: 0002534753
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fd2

Адаптивное цифровое дифференцирующее и прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности прогноза на этапе восстановления заданного времени прогноза после завершения...
Тип: Изобретение
Номер охранного документа: 0002535467
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1740

Способ обнаружения гололеда на проводах воздушных линий электропередачи

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат - расширение функциональных возможностей. Способ включает передачу от начала линии до конца линии электропередачи высокочастотного сигнала и контроль параметров,...
Тип: Изобретение
Номер охранного документа: 0002537380
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2b62

Способ работы теплового пункта

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов. Способе работы теплового пункта, согласно которому холодная...
Тип: Изобретение
Номер охранного документа: 0002542563
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b84

Способ контроля качества проводов воздушной линии электропередачи

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля качества проводов воздушной линии электропередачи. Измеряют напряжение и ток в первом и втором местоположениях на линии электропередачи. При этом измеренные напряжения и токи в первом и втором...
Тип: Изобретение
Номер охранного документа: 0002542597
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2fcf

Способ измерения постоянной гравитации

Изобретение относится к области гравиметрии и может быть использовано для измерений постоянной гравитации γ. В указанном способе процесс измерения начинается после окончания вывешивания шаров с известной массой и удаления держателя, когда шары начинают свободное движение в поле тяготения данных...
Тип: Изобретение
Номер охранного документа: 0002543707
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3067

Способ очистки загрязненного воздуха

Изобретение относится к области вентиляции промышленных объектов и может быть использовано для очистки воздуха от газообразных и аэрозольных вредных веществ. В способе очистки загрязненного воздуха, заключающемся в отсосе загрязненного воздуха через один или несколько воздухоприемников,...
Тип: Изобретение
Номер охранного документа: 0002543859
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3255

Устройство для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР)...
Тип: Изобретение
Номер охранного документа: 0002544360
Дата охранного документа: 20.03.2015
Показаны записи 41-50 из 184.
27.05.2014
№216.012.c964

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых системах контроля и наведения различных объектов. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002517322
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc9d

Ветроэлектрогенератор

Изобретение относится к области электромашиностроения, а именно к магнитоэлектрическим генераторам, использующим для вращения ротора энергию воздушного потока. Техническим результатом является сохранение выработки электроэнергии при малых и больших скоростях ветра, а также при повышенных...
Тип: Изобретение
Номер охранного документа: 0002518152
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dc

Способ измерения электропроводности раствора электролита

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в...
Тип: Изобретение
Номер охранного документа: 0002519495
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dd

Способ оперативного контроля качества нефти и нефтепродуктов

Использование: для оперативного контроля качества нефти и нефтепродуктов. Сущность изобретения заключается в том, что выполняют возбуждение в образце, помещенном в постоянное магнитное поле, сигналов спин-эхо протонного магнитного резонанса (ПМР) сериями радиочастотных импульсов, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002519496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1df

Счетчик активной энергии переменного тока

Изобретение относится к устройствам для учета потребляемой из электросети активной электрической энергии. Cчетчик переменного тока содержит провода электросети и провода нагрузки, а также электрически связанные между собой трансформатор, датчик тока, датчик напряжения, преобразователь мощности...
Тип: Изобретение
Номер охранного документа: 0002519498
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
+ добавить свой РИД