×
27.08.2015
216.013.7460

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ТОПЛИВНОГО КОЛЛЕКТОРА С ФОРСУНКАМИ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПРОДУКТОВ КОКСОВАНИЯ ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению, в частности к способам очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива. Способ очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива включает очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок, отличающийся тем, что реагент подают в сверхкритическом состоянии при температуре и давлении, не превышающих допустимые значения температуры и давления из условия прочности коллектора, а степень очистки форсунок контролируют по величине расхода реагента, проходящего через коллектор, который достигает постоянного нормированного значения. Очистку коллектора с форсунками производят в составе двигателя. В качестве реагента подают органическое или неорганическое вещество. Изобретение позволяет производить очистку коллекторов до получения заданных технических характеристик, параметры которых определяются на испытательном оборудовании прокачкой топливом, используемые реагенты не токсичны и инертны по отношению к материалам коллектора, способ обладает экологической чистотой и дешевизной, не требует дорогостоящих подготовительных операций. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к машиностроению, в частности к способам очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива.

Сужение поперечного сечения каналов и отверстий завихрителей распыливающих форсунок коллектора камеры сгорания является серьезным эксплуатационным дефектом, ограничивающим ресурс и снижающим надежность запуска двигателя. Уменьшение сечения каналов и отверстий завихрителей форсунок происходит из-за отложений на стенках продуктов разложения топлива, так как, проходя по коллектору, топливо нагревается и окисляется кислородом, растворенным в топливе. При этом образуются высокомолекулярные продукты, которые, осаждаясь на стенках каналов и отверстий, преобразуются до твердого состояния, что и является коксовыми отложениями или коксом. Коксовые отложения в коллекторах газотурбинного двигателя являются слабопористой структурой высокой твердости с высокой адгезией.

Наиболее близким техническим решением к заявляемому изобретению является способ очистки топливного коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива, включающий очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок.

/RU 2244126, МПК F02C 7/22. Опубликовано: 20.02.2004/

В известном способе очищаемые поверхности промывают нагретыми органическим и неорганическим растворителями. Основой способа является преобразование плохо растворимых твердых коксовых отложений в более растворимое состояние, которое происходит при продувке горячим озоном. Преобразование кокса происходит только в поверхностном слое отложений в виду его низкой пористости, чему также не способствует низкое давление процесса обработки озоном. Преобразованный поверхностный слой отложений растворяется органическим растворителем, а оставшиеся отложения растворяются другими неорганическими растворителями. Так как скорость растворения отложений низкая, то скорость течения растворителей в каналах форсунок мала и нерастворимые микрочастицы кокса (кварц, металлы) остаются в коллекторе. Эти нерастворимые микрочастицы, высвобождаемые из структуры кокса, удаляются за счет гидродинамического возвратно-поступательного воздействия потока растворителя. Поэтому очистка от коксовых отложений данным методом происходит послойно, так как внутрь структуры отложения растворители не проникают ввиду низкой пористости кокса, высокой вязкости жидкостных растворителей и низкого давления процесса. Процесс очистки многостадийный, сложный, требующий специального оборудования и мероприятий по охране окружающей среды. Озон интенсивно разлагается при повышенных температурах, пожаро- и взрывоопасен и токсичен. Процесс очистки реально реализуется только на коллекторе, снятом с двигателя.

Задача изобретения - повышение эффективности очистки каналов отверстий и завихрителей форсунок коллекторов.

Ожидаемый технический результат полное удаления продуктов коксования топлива с завихрителей форсунок, снижение материалоемкости и трудозатрат при очистке.

Ожидаемый технический результат достигается тем, что в известном способе очистки топливного коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива, включающем очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок, по данному предложеню реагент подают в сверхкритическом состоянии, а степень очистки форсунок контролируют по увеличению величины расхода реагента, проходящего через коллектор который достигает постоянного нормированного значения. Очистку коллектора с форсунками можно производить в составе двигателя. По предложению, реагент подают при состоянии вещества, при котором исчезает различие между жидкой и газовой фазой при значениях температуры и давления выше критической точки, но не превышающих допустимые значения температуры и давления из условия прочности коллектора. В качестве реагента подают органическое или неорганическое вещество. В качестве реагента можно подавать любое вещество из группы: Диоксид углерода (CO2); Вода (H2O); Метан (CH4); Этан (C2H6); Пропан (C3H8); Этилен (C2H4); Пропилен (C3H6); Метанол (CH3OH); Этанол (C2H5ОН); Ацетон (C3H6O); Аммиак (NH3); Ксенон (Xe) или их смеси. Одновременно с реагентом в сверхкритическом состоянии можно подать сореагенты, усиливающие свойства основного реагента по удалению продуктов коксования топлива.

Сущность способа основана на следующем.

Если создать условия, при которых параметры вещества: давление и температура будут превышать параметры так называемой критической точки, то вещество при этом переходит в сверхкритическое состояние.

Любое вещество в сверхкритическом состоянии обладает более высокой подвижностью по сравнению с традиционными жидкими органическими растворителями.

Несмотря на незначительно более низкую плотность по сравнению с жидкостью, динамическая вязкость сжатых газов соответствует скорее значениям нормального газообразного состояния. Коэффициент диффузии сверхкритического газа более чем в десять раз выше, чем у жидкости.

Из приведенных показателей, очевидно, что параметры зависят от температуры и давления и что простое повышение температуры приведет к повышению вязкости для газовой фазы, но и к понижению вязкости для сверхкритического газа или жидкости.

Таким образом, вещество в сверхкритическом состоянии может принципиально лучше, чем классический жидкий растворитель проникать в мелкопористую структуру кокса, поглощать и транспортировать растворимые составляющие. Применение вещества в сверхкритическом состоянии позволяет полностью отделить его от растворенного кокса в противовес классическим растворителям, которые должны проходить специальную очистку регенерацию. Иными словами реагент в сверхкритическом состоянии и растворенный в нем кокс полностью разделяются при переходе реагента из сверхкритического состояния в естественное при нормальных условиях.

Другой особенностью изобретения является необходимость создания в коллекторе с форсунками режима газодинамического запирания (когда повышение давления газа в коллекторе не вызывает повышения расхода). Это дает возможность создать сверхкритические условия для используемого реагента.

Возможен вариант работы, когда режим газодинамического запирания в коллекторе не наступает, а реагент уже переходит в состояние сверхкритического газа. В этом случае процесс очистки коллектора контролируют по величине, расхода реагента, когда он достигает постоянного нормированного значения.

При реализации способа без снятия коллектора с двигателя в коллектор подается реагент в сверхкритическом состоянии, но с параметрами Ркр и Ткр, не превышающими допустимые значения давления и температуры из условий прочности коллектора, а расход реагента создается из условия получения рабочего давления Рр≥Ркр в каналах самой дальней относительно штуцера подвода топлива в коллектор форсунке и условия «запирания» форсунок (создания сверхзвукового режима истечения).

В качестве реагента можно подавать любое вещество из группы, приведенной выше. Одновременно с реагентом в сверхкритическом состоянии можно подать сореагенты, усиливающие свойства основного реагента по удалению продуктов коксования топлива. Способ предусматривает предварительную подборку реагентов для различных типов коксовых отложений.

Пример очистки первого каскада форсунок коллектора газотурбинного двигателя.

На чертеже - схема подключения коллектора к системе подвода и отвода реагента без снятия с двигателя.

Коллектор 1 с форсунками 2 установлен на двигателе и соединен разъемным соединением 3 с магистралью подачи реагента и сореагента с установленными на ней датчиком температуры 4, и датчиком давления 5, и датчиком давления 6, и температуры 7 на последних относительно входного штуцера форсунках.

Данный коллектор имеет форсунки, в которых расположены завихрители 1-го и 2-го каскадов. Каждый каскад форсунок коллектора имеет один штуцер для подключения. В первую очередь коксованию подвергается 1-ый каскад коллектора.

Пример 1

Проверялась возможность удаления реальных коксовых отложений с завихрителей форсунок 1-го и 2-го каскадов топливного коллектора газотурбинного двигателя после эксплуатации, реагентом в сверкритическом состоянии с добавлением сореагента. В качестве реагента использовался чистый CO2 с добавлением 5% сореагента в виде чистого ацетона. При нормальных условиях CO2 - это газ, а ацетон - жидкость, которые с твердыми коксующимися отложениями в реакцию не вступают. Гравиметрический и фотометрический способы контроля показали, что при TPКР CM=90°C и Рр>Ркр см=8,5 МПа и времени очистки 2,5 часа с расходом смеси около 20 г/мин, с поверхности завихрителей форсунок удаляется около 79% отложений.

Данное сочетание реагента и сореагента не исчерпывает всего многообразия смесей в сверхкритическом состоянии, которые могут быть использованы для очистки от коксующихся отложений.

Поиск состава реагента в сверхкритическом состоянии, для которого выполняются условия (давление в коллекторе больше, чем Ркр, но меньше, чем допустимое давление из условий прочности коллектора Рд=10 МПа при эффективной очистке от кокса) с учетом требований минимальной стоимости, доступности и простоты получения смеси выполняли экспериментально.

Пример 2.

К штуцеру первого каскада подключается источник реагента, например пропана, который в сверкритическом состоянии имеет параметры Ткр=95°C и Ркр=4,25 МПа. Источник имеет возможность измерять создаваемый расход реагента и создавать рабочее давление Рр больше, чем давление критическое Ркр при расходе реагента через первый каскад коллектора.

Величина давления Рр, обеспечивающего газодинамическое запирание при Ткр, определяется экспериментально, путем подключения к источнику сверкритического реагента чистого коллектора вне двигателя и получения величины давления Рр>Ркр реагента в незакоксованных каналах завихрителя форсунки, наиболее удаленной от входного штуцера. Одновременно определяется нормированная величина расхода Qн, создаваемая источником реагента, которая должна обеспечивать как запирание завихрителей при Ткр, так и рабочее давление смеси, равное Ркр, в каналах форсунки наиболее удаленной от входного штуцера. Таким образом, становятся известны величины Ркр, Ткр, Рр, Тр и Qh, причем Ркр<Рр<Рд для чистого коллектора.

Очистка коллектора на двигателе производится подключением коллектора (по схеме 1) к источнику сверхкритического пропана и созданием на входе в очищаемый коллектор рабочего давления Рр, при Тр>95°C при этом контролируется расход пропана Q. Двигающийся в каналах коллектора и завихрителях, сверхкритический пропан растворяет коксовые отложения и выходит через завихрители форсунок. При истечении из завихрителя форсунки в камеру сгорания сверхкритический пропан переходит в газообразное состояние и уходит в атмосферу, а растворенные в сверхкритическом пропане коксовые отложения выпадают в виде микрочастиц внутри камеры сгорания, которые удаляются воздушным потоком при запуске газотурбинного двигателя. Нерастворимые микрочастицы кварца и металлов также выносятся пропаном, т.к. скорость движения сверкритического пропана в коллекторе высокая, а плотность пропана ρкр≥0,217 г/см3. Очистка сверхкритическим пропаном производится до тех пор, пока при Рр и Тр на входе в коллектор расход пропана не станет равным нормированному расходу Qн чистого коллектора. Время очистки зависит от исходной закоксованности коллектора и определяется экспериментально. Получено при ТКР СМ=95°C и Ркр см=4,25 МПа, время очистки 3,5 часа расход смеси 35 г/мин, с поверхности завихрителей форсунок удаляется около 99% отложений.

Реагент (пропан) в сверхкритическом состоянии настолько сильно изменяет физические свойства: вязкость, плотность и другие, что это влечет за собой изменение химических свойств таких, как растворяющая способность. Таким образом, реагент в сверхкритическом состоянии имеет высокую проникающую способность - как у газа, а растворяющую способность - как у жидкости. Для усиления химической активности реагента в сверхкритическом состоянии в малых дозах добавляется сореагент.

Так как все форсунки коллектора представляют собой узкие каналы и сопла, которые при достижении рабочим телом в канале форсунки сверхзвукового режима течения, «запираются», то наступает момент, когда увеличение давления на входе в коллектор больше не увеличивает расход рабочего тела через него. Так как конструкция и размеры форсунок коллектора одинаковы, то они имеют практически одинаковое гидравлическое сопротивление, что позволяет рассчитать давление на входе в коллектор Рр, при котором смесь реагент и сореагент будет находиться в сверхкритическом состоянии в каналах самой дальней относительно штуцера подвода топлива в коллектор форсунке.

Соотношение масс и химическая чистота реагента и сореагента будут изменять параметры Ткр и Ркр, что определяется соотношениями работы влияет на растворяющую способность и определяется экспериментально.

Допустимое давление в топливных коллекторах газотурбинного двигателя разных конструкций варьируется в пределах 3-15 МПа, что дает возможность варьировать химический состав реагентов в смеси и подобрать наиболее активные из них.

Применение изобретения позволяет производить очистку коллекторов до получения заданных технических характеристик, параметры которых определяются на испытательном оборудовании прокачкой топливом, используемые реагенты не токсичны и инертны по отношению к к материалам коллектора, способ обладает экологической чистотой и дешевизной, не требует дорогостоящих подготовительных операций.


СПОСОБ ОЧИСТКИ ТОПЛИВНОГО КОЛЛЕКТОРА С ФОРСУНКАМИ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПРОДУКТОВ КОКСОВАНИЯ ТОПЛИВА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 302.
20.05.2014
№216.012.c3bb

Газожидкостная форсунка

Изобретение относится к области авиационных систем аэрозольной защиты, в частности к распыливанию жидкостей с помощью форсунок, которые используются для создания аэрозольного защитного шлейфа, снижающего силу инфракрасного излучения сопла двигателя самолета. Газожидкостная форсунка содержит...
Тип: Изобретение
Номер охранного документа: 0002515866
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c730

Поворотное осесимметричное сопло турбореактивного двигателя

Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный и подвижный корпусы, а также экраны, жестко прикрепленные к их внутренней поверхности с образованием каналов для прохода охлаждающего воздуха. Экран подвижного корпуса установлен между подвижным и неподвижным...
Тип: Изобретение
Номер охранного документа: 0002516751
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cede

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора...
Тип: Изобретение
Номер охранного документа: 0002518729
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf05

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси...
Тип: Изобретение
Номер охранного документа: 0002518768
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d293

Охлаждаемая турбина газотурбинного двигателя

Охлаждаемая турбина газотурбинного двигателя содержит наружный корпус, установленные в нем надроторную вставку и сопловой аппарат с периферийными отверстиями, соединенными с системой подвода охлаждающего воздуха, ротор с рабочими лопатками с каналами охлаждения и выступом по периметру торцевой...
Тип: Изобретение
Номер охранного документа: 0002519678
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dc84

Способ испытания компрессора и установка для испытания

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя. В качестве силового...
Тип: Изобретение
Номер охранного документа: 0002522230
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc87

Узел отсоединения валов в роторе низкого давления газотурбинного двигателя

Изобретение относится к газотурбинным двигателям (ГТД) авиационного применения, а именно к конструкции узла соединения роторов компрессора и турбины. Техническим результатом, достигаемым при использовании настоящего изобретения, является сохранение соосности роторов компрессора и турбины при их...
Тип: Изобретение
Номер охранного документа: 0002522233
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de82

Устройство для смазки опорного подшипника ротора турбомашины

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника...
Тип: Изобретение
Номер охранного документа: 0002522748
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8b9

Радиально-торцевое контактное уплотнение опоры турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является снижение трения и износа элементов уплотнения за счет снижения нагрузки на графитовые кольца на...
Тип: Изобретение
Номер охранного документа: 0002525370
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8bc

Упругодемпферная опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин. Техническим результатом, достигаемом при использовании заявленной упругодемпферной опоры ротора турбомашины, является снижение напряжений в упругом элементе опоры и, как...
Тип: Изобретение
Номер охранного документа: 0002525373
Дата охранного документа: 10.08.2014
Показаны записи 31-40 из 390.
20.05.2014
№216.012.c730

Поворотное осесимметричное сопло турбореактивного двигателя

Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный и подвижный корпусы, а также экраны, жестко прикрепленные к их внутренней поверхности с образованием каналов для прохода охлаждающего воздуха. Экран подвижного корпуса установлен между подвижным и неподвижным...
Тип: Изобретение
Номер охранного документа: 0002516751
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cede

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора...
Тип: Изобретение
Номер охранного документа: 0002518729
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf05

Охлаждаемая турбина

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси...
Тип: Изобретение
Номер охранного документа: 0002518768
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d293

Охлаждаемая турбина газотурбинного двигателя

Охлаждаемая турбина газотурбинного двигателя содержит наружный корпус, установленные в нем надроторную вставку и сопловой аппарат с периферийными отверстиями, соединенными с системой подвода охлаждающего воздуха, ротор с рабочими лопатками с каналами охлаждения и выступом по периметру торцевой...
Тип: Изобретение
Номер охранного документа: 0002519678
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dc84

Способ испытания компрессора и установка для испытания

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя. В качестве силового...
Тип: Изобретение
Номер охранного документа: 0002522230
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc87

Узел отсоединения валов в роторе низкого давления газотурбинного двигателя

Изобретение относится к газотурбинным двигателям (ГТД) авиационного применения, а именно к конструкции узла соединения роторов компрессора и турбины. Техническим результатом, достигаемым при использовании настоящего изобретения, является сохранение соосности роторов компрессора и турбины при их...
Тип: Изобретение
Номер охранного документа: 0002522233
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de82

Устройство для смазки опорного подшипника ротора турбомашины

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Особенностью предложенной конструкции является использование для привода во вращение откачивающего насоса размещенного внутри масляной полости опорного подшипника...
Тип: Изобретение
Номер охранного документа: 0002522748
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e8b9

Радиально-торцевое контактное уплотнение опоры турбомашины

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей газотурбинных двигателей и энергетических установок. Техническим результатом является снижение трения и износа элементов уплотнения за счет снижения нагрузки на графитовые кольца на...
Тип: Изобретение
Номер охранного документа: 0002525370
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8bc

Упругодемпферная опора ротора турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции упругодемпферных опор роторов турбомашин. Техническим результатом, достигаемом при использовании заявленной упругодемпферной опоры ротора турбомашины, является снижение напряжений в упругом элементе опоры и, как...
Тип: Изобретение
Номер охранного документа: 0002525373
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8be

Выходное устройство турбины

Изобретение относится к конструкции опорных или установочных устройств выходного устройства турбины. Выходное устройство турбины содержит полые аэродинамические профилированные стойки, размещенные за рабочим колесом последней ступени турбины, а также аэродинамические профилированные контура....
Тип: Изобретение
Номер охранного документа: 0002525375
Дата охранного документа: 10.08.2014
+ добавить свой РИД