×
20.08.2015
216.013.72d4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА МОЛИБДЕН-99

Вид РИД

Изобретение

Аннотация: Заявленное изобретение относится к химической технологии производства радиоактивных изотопов медицинского назначения. В заявленном способе предусмотрен процесс выделения молибдена-99 из раствора облученной урановой мишени на стадии концентрирования и аффинажа с целью получения препарата молибден-99. При этом концентрирование молибдена-99 из азотнокислого раствора урановой мишени на неорганическом сорбенте проводят в одну или две стадии, десорбцию молибдена перед этапом аффинажа осуществляют не засоляющим термически разлагаемым реагентом. Далее на этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата, причем в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий. Техническим результатом является повышение химической и радиохимической чистоты препарата молибден-99 при достижении существующих на мировом рынке требований к препарату и сохранения приемлемого технологического выхода. 3 з.п. ф-лы, 3 пр., 2 табл.

Изобретение относится к области химической технологии производства радиоактивных изотопов медицинского назначения. Прикладное значение изотопа молибден-99 определяется получением из него дочернего радионуклида технеций-99m, который в течение последних лет остается наиболее широко используемым в ядерной медицине радионуклидом.

Известен способ получения концентрата молибдена-99, включающий облучение растворного уранового топлива, концентрирование молибдена методом сорбции на неорганическом сорбенте марки Т-5, представляющем собой оксигидрат титана с добавкой оксигидрата циркония, и последующий аффинаж (Н.Д. Бетенеков, Е.И. Денисов, Т.А. Недобух, Л.М. Шарыгин. Патент США №6337055 от 08.02.2002). Недостатком данного способа является использование в качестве исходного сернокислого раствора урана, что из-за проблем коррозии накладывает существенные ограничения по применению данного способа в радиохимическом производстве с оборудованием из нержавеющей стали.

Наиболее близким по технической сущности к заявляемому решению является способ получения концентрата радионуклида молибден-99, включающий растворение облученной урановой мишени в азотной кислоте, концентрирование молибдена-99 на неорганическом сорбенте Т-5 и последующий аффинаж (Бетенеков Н.Д, Денисов Е.И., Ровный С.И., Логунов М.В., Ворошилов Ю.А., Бугров К.В. Патент №2288516 от 25.04.2005), выбранный в качестве прототипа. Недостатком данного способа является то, что десорбцию молибдена с Т-5 перед аффинажным переделом проводят калиевой или натриевой щелочью, то есть засоляющими агентами, которые затрудняют дальнейшую очистку и препятствуют проведению аффинажа сублимационным методом. Кроме того, данный способ не позволяет получить препарат молибден-99, то есть продукт с высокой степенью очистки.

Задачей настоящего технического решения является усовершенствование процесса выделения молибдена-99 из раствора облученной урановой мишени на стадии концентрирования и аффинажа с целью получения препарата молибден-99.

Указанная задача достигается тем, что концентрирование молибдена-99 на неорганическом сорбенте Т-5 проводят в одну или две стадии, десорбцию молибдена перед этапом аффинажа осуществляют не засоляющим термически разлагаемым реагентом, а на этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата, причем в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий.

Технология осуществления способа заключается в следующем. Облученную урановую мишень растворяют в растворе азотной кислоты в присутствии или без катализатора (в зависимости от материала мишени). Полученный азотнокислый раствор в соответствии с прототипом пропускают через колонку, заполненную сорбентом Т-5, со скоростью фильтрации от 5 до 60 колоночных объемов в час (к.о./ч). Концентрация азотной кислоты в исходном растворе не лимитируется и определяется составом растворяемой мишени. Колонку промывают кислотой и водой, или только водой. Молибден десорбируют с колонки щелочным раствором.

В случае дальнейшего направления раствора на аффинажный передел в качестве десорбирующих щелочных растворов используют не засоляющие термически разлагаемые реагенты: от 1 до 5 моль/л гидроксид аммония; от 10% до 40% гидроксид тетраалкиламмония; от 0,1 до 1 моль/л гуанидина или гуанидин карбоната, или их смеси. Поскольку в сумме на этапах концентрирования и аффинажа молибдена проводится не менее двух сорбционных стадий, данный раствор направляют на анионообменный аффинаж.

Снижение концентрации реагентов в указанных десорбирующих растворах ниже заданного концентрационного диапазона приводит к неполной десорбции молибдена с сорбента, а увеличение концентрации выше верхней границы диапазона приводит к негативному влиянию компонента на последующую стадию анионообменной очистки молибдена. Скорость фильтрации десорбирующего раствора составляет от 5 до 50 к.о./ч, температура процесса от 40 до 90°C.

При необходимости, осуществляют вторую стадию концентрирования молибдена-99 на сорбенте Т-5. В этом случае десорбцию молибдена после первой стадии концентрирования проводят в соответствии с прототипом раствором калиевой или натриевой щелочи с концентрацией от 0,5 до 1,5 моль/л со скоростью от 5 до 50 к.о./ч при температуре от 40 до 90°C. Прием десорбата молибдена первой стадии концентрирования осуществляют в промежуточную емкость на «подушку» крепкой азотной кислоты с целью его подкисления до концентрации 0,01-0,5 моль/л по азотной кислоте. Дальнейшее повышение концентрации азотной кислоты приводит к неоправданному увеличению объема продукта. Полученный таким образом азотнокислый раствор является исходным для второй стадии концентрирования на неорганическом сорбенте Т-5.

Вторая стадия концентрирования молибдена-99 на сорбенте Т-5 на стадиях сорбции и промывки по технологическим параметрам аналогична первой. Десорбцию молибдена-99 после второй стадии концентрирования проводят не засоляющими термически разлагаемыми реагентами, как указано выше. Полученный бессолевой раствор молибдена направляют на этап аффинажа.

На этапе аффинажа проводят анионообменную и высокотемпературную очистку или только высокотемпературную очистку препарата.

Анионообменную очистку осуществляют с помощью высокоосновного анионита, функциональной группой которого является четвертичный амин (-N+≡), например на анионите Lewatit МР-500. Щелочной раствор на основе не засоляющего термически разлагаемого реагента с предварительным разбавлением или без него пропускают через колонку, заполненную анионитом, со скоростью фильтрации от 5 до 20 к.о./ч при температуре не более 20°C. После сорбции колонку с анионитом промывают водой и десорбируют молибден раствором азотной кислоты с концентрацией от 1 до 6 моль/л в присутствии или в отсутствие от 0,5 до 10 г/л пероксида водорода. Скорость фильтрации десорбирующего раствора составляет от 5 до 20 к.о./ч, температура процесса от 40 до 90°C.

Понижение скорости фильтрации в процессах сорбции и десорбции на этапах концентрирования и аффинажа ниже 5 к.о./ч неоправданно затягивает процесс. Увеличение скорости фильтрации выше указанных диапазонов, повышение температуры в процессе сорбции на стадии анионообменного аффинажа, снижение температуры ниже нижнего предела в процессе десорбции на этапах концентрирования и аффинажа приводит к повышенным потерям целевого компонента. Превышение температуры в процессе десорбции на всех стадиях более 90°C чревато вскипанием растворов и нарушением гидродинамики процессов.

Заключительной стадией является высокотемпературная очистка препарата. Итоговый щелочной десорбат на основе не засоляющего термически разлагаемого реагента со второй стадии концентрирования или азотнокислый десорбат со стадии анионообменного аффинажа упаривается досуха. Упаривание может быть реализовано как в статических условиях, после сбора всего объема десорбата в емкости, так и в динамических условиях путем непрерывной подачи десорбата в печь.

Стадию высокотемпературной очистки производят без возгонки или с возгонкой молибдена в газовую фазу. В первом случае при температуре 450-600°C осуществляют отгонку легколетучих примесей (радиоизотопов йода, цезия, рутения и т.д.), при этом молибден остается в реакторе. Во втором случае после удаления легколетучих примесей осуществляют сублимацию молибдена при температуре от 900 до 1200°C и улавливание триоксида молибдена из газовой фазы в холодильнике.

В обоих вариантах смыв молибдена с поверхности реактора или холодильника осуществляют после охлаждения раствором азотной кислоты или гидроксида натрия с концентрацией от 0,1 до 3 моль/л. Раствор, полученный в результате смыва, является препаратом молибден-99.

Сравнительный анализ с прототипом позволяет сделать вывод, что в заявляемом техническом решении на этапе аффинажа применяются дополнительные стадии анионообменной и высокотемпературной очистки концентрата. Таким образом, заявляемое решение соответствует критерию «новизна».

В литературных источниках приводится обширный объем информации о возможности выделения молибдена-99 на всевозможных сорбционных материалах и различных вариантах организации процессов сорбции и десорбции (Радиохимия, 1999, т.41, №3, с.193-204). Однако применение для десорбции молибдена щелочных не засоляющих термически разлагаемых органических реагентов, таких как гидроксид тетраалкиламмония, гуанидин или карбонат гуанидина, в литературе не описано. Возможность десорбции молибдена-99 данными реагентами с неорганического сорбента Т-5 обнаружена авторами, является новой и неожиданной. Факт эффективной сорбции молибдена-99 на сильноосновных анионитах с функциональной группой типа «четвертичный амин (-N+≡)» только при температуре не выше 20°C также обнаружен авторами и в литературе не описан. Все изложенное позволяет признать заявляемое техническое решение соответствующим критерию «изобретательский уровень».

Возможность осуществления заявляемого технического решения подтверждается следующими примерами:

Пример 1

Облученную уран-алюминиевую мишень растворили в азотной кислоте в присутствии азотнокислой ртути. Раствор после растворения имел состав: 3,5 моль/л HNO3; 24 г/л А1; 1,5 г/л U; 1,6·109 Бк/см3 99Mo (содержание других продуктов деления указано в таблице 1).

Данный раствор направили на первую стадию концентрирования на сорбенте Т-5. Скорость фильтрации поддерживали около 25 к.о./ч. После сорбции колонку промыли 3 моль/л азотной кислотой и водой при скорости фильтрации от 25 до 50 к.о./ч. Объем промывных растворов составил по 15 к.о. каждый. Потери молибдена-99 в фильтрат и промывку первого цикла очистки не превысили 4%. Далее провели десорбцию молибдена-99 с сорбента 1,0 моль/л раствором натриевой щелочи со скоростью фильтрации 10 к.о./ч при температуре 80°C. Объем десорбата составил 10 к.о. Выход молибдена-99 на первом цикле составил 95% от исходного количества.

Щелочной десорбат первой стадии концентрирования приняли на «подушку» крепкой азотной кислоты, так чтобы итоговая концентрация азотной кислоты в растворе составила около 0,2 моль/л. Данный раствор направили на вторую стадию концентрирования на сорбенте Т-5. Скорость его фильтрации составила 50 к.о./ч. После сорбции колонку промыли 0,1 моль/л раствором азотной кислоты и водой при скорости фильтрации от 80 до 100 к.о./ч. Объем промывных растворов составил по 20 к.о. каждый. Потери молибдена-99 в фильтрат и промывку второй стадии концентрирования не превысили 0,7%. Десорбцию молибдена-99 провели 30% раствором тетраэтиламмония объемом 10 к.о. со скоростью фильтрации 10 к.о./ч при температуре 70°C. В десорбат выделено более 90% от количества молибдена-99, поданного на вторую стадию концентрирования.

Щелочной десорбат второй стадии концентрирования разбавили вдвое водой. Полученный раствор после перемешивания направили на стадию анионообменного аффинажа на анионите Lewatit МР-500. Скорость фильтрации через колонку равнялась 10 к.о./ч, температура процесса 15°C. После сорбции анионит промыли водой при скорости фильтрации от 20 до 25 к.о./ч. Объем промывки составил 20 к.о. Десорбцию молибдена-99 провели в 10 к.о. 5,0 моль/л раствора азотной кислоты в присутствии 1 г/л H2O2 со скоростью фильтрации 5 к.о./ч при температуре 60°C. В десорбат выделено около 85% от количества молибдена-99, поданного на данную стадию.

В процессе десорбции молибдена-99 с анионита Lewatit МР-500 десорбат принимали в кварцевый реактор, который после окончания процесса установили в шахтную печь. Раствор упарили досуха и по окончании упаривания произвели выдержку реактора в шахте печи при температуре 600°C в течение 60 мин. Далее реактор извлекли из шахты печи и охладили в течение 20 мин.

Для смыва молибдена с внутренней поверхности реактора использовали раствор гидроксида натрия с молярной концентрацией 0,3 моль/л. Объемная активность молибдена-99 в препарате составила 1,1·1011 Бк/см3. Качество полученного препарата молибдена-99 демонстрирует таблица 2.

Пример 2

На первую стадию очистки подали раствор уран-цинковой мишени с составом, мг/л: Mo - 5; U - 1300; Zn - 18000; Fe - 40; Cu - 10; Mn - 10; Pb - 10; Zr -10; Ce - 10; Cr - 10; Ni - 10; HNO3 - 4 моль/л. Растворение проводили в азотной кислоте без катализатора. Параметры проведения первой стадии концентрирования в ходе процессов сорбции и промывки были аналогичны указанным в примере 1. Потери молибдена с фильтратом и промывкой составили 4,1%. Десорбцию молибдена с сорбента осуществляли раствором гидроксида тетраметиламмония с объемным содержанием 15% со скоростью фильтрации 10 к.о./ч при температуре 70°C. Объем десорбата составил 10 к.о.

Щелочной десорбат с этапа концентрирования без разбавления направили на стадию анионообменного аффинажа с анионитом Lewatit МР-500. Сорбцию провели при температуре 20°C при скорости фильтрации 10 к.о./ч. Насыщенную молибденом колонку с анионитом Lewatit МР-500 промыли водой при скорости фильтрации от 20 до 25 к.о./ч. Объем промывки составил 30 к.о.

Десорбцию молибдена с анионита Lewatit МР-500 осуществляли 4,0 моль/л раствором азотной кислоты со скоростью 10 к.о./ч при температуре 80°C. Прием раствора осуществляли в кварцевый реактор, находящийся в разогретой до 550°C трубчатой печи. Таким образом, десорбция компонента с анионита и упаривание десорбата происходили одновременно (упаривание в динамических условиях).

По окончании приема десорбата в реактор произвели выдержку продукта в печи при температуре 600°C в течение 30 мин для отгонки легколетучих примесей, после чего температуру в печи подняли до 1100°C и провели возгонку и улавливание триоксида молибдена в холодильнике. Продолжительность последней стадии составила 30 мин. Далее холодильник извлекли из реактора печи и охладили в течение 20 мин. Смыв молибдена с внутренней поверхности холодильника провели раствором 0,5 моль/л азотной кислоты. Итоговый раствор, являющийся препаратом молибдена, имел следующий состав, мг/л: Mo - 400; Al - 0,3; Fe - 0,1; Cu - 0,01; Mn - 0,05; Pb - 0,02 (присутствие примесей Al, Fe, Cu, Mn и Pb обусловлено их содержанием в растворе азотной кислоты, применяемой для смыва молибдена). Выход молибдена на данной операции составил около 90%, а общий технологический выход компонента в препарат - около 70%.

Пример 3

Облученную уран-алюминиевую мишень растворили в азотной кислоте в присутствии азотнокислой ртути. Раствор после растворения имел состав: 3,8 моль/л HNO3; 22 г/л Al; 1,3 г/л U; 1,8·109 Бк/см3 99Мо.

Данный раствор направили на первую стадию концентрирования на сорбенте Т-5. Скорость фильтрации поддерживали около 25 к.о./ч. После сорбции колонку промыли 3 моль/л азотной кислотой и водой при скорости фильтрации от 25 до 50 к.о./ч. Объем промывных растворов составил по 15 к.о. каждый. Потери молибдена-99 в фильтрат и промывку первого цикла очистки составили 3,5%. Далее провели десорбцию молибдена-99 с сорбента 1,0 моль/л раствором натриевой щелочи со скоростью фильтрации 10 к.о./ч при температуре 90°C. Объем десорбата составил 10 к.о. Выход молибдена-99 на первом цикле составил 96% от исходного количества.

Щелочной десорбат первой стадии концентрирования приняли на «подушку» крепкой азотной кислоты, так чтобы итоговая концентрация азотной кислоты в растворе составила около 0,1 моль/л. Данный раствор направили на вторую стадию концентрирования на сорбенте Т-5. Скорость его фильтрации составила 40 к.о./ч. После сорбции колонку промыли 0,1 моль/л раствором азотной кислоты и водой при скорости фильтрации от 80 до 100 к.о./ч. Объем промывных растворов составил по 20 к.о. каждый. Потери молибдена-99 в фильтрат и промывку второй стадии концентрирования не превысили 1,1%. Десорбцию молибдена-99 провели 1 моль/л раствором карбоната гуанидина объемом 10 к.о. со скоростью фильтрации 10 к.о./ч при температуре 60°C. Прием раствора осуществляли в кварцевый реактор, находящийся в разогретой до 550°C трубчатой печи. Таким образом, упаривание проводили в динамических условиях.

По окончании приема десорбата в реактор произвели выдержку продукта в печи при температуре 600°C в течение 30 мин для отгонки легколетучих примесей, после чего температуру в печи подняли до 1100°C и провели возгонку и улавливание триоксида молибдена в холодильнике. Продолжительность последней стадии составила 30 мин. Далее холодильник охладили в течение 20 мин. Смыв молибдена с внутренней поверхности холодильника провели раствором 0,5 моль/л натриевой щелочи. Общий технологический выход компонента в препарат составил около 78%. Итоговый раствор соответствовал требованиям фармакопеи (см. таблицу 2).

Приведенные примеры показывают, что при использовании заявляемого технического решения в ходе трех или четырех стадий концентрирования и аффинажа возможно высокая очистка молибдена-99 от сопутствующих стабильных и радиоактивных примесей с получением препарата молибден-99 фармакопейного качества.

Таблица 1
Результаты анализа γ-активных примесей в технологических продуктах, полученных при переработке мишени по примеру 1
Продукт Содержание примесей в целевых продуктах, генерируемых на стадиях технологического процесса
Раствор блока Десорбат I стадии концентрирования (сорбент Т-5) Десорбат II стадии концентрирования (сорбент Т-5) Десорбат стадии анионообменного аффинажа (сорбент Lewatit МР-500) Стадия высокотемпературной обработки
Смыв Mo с реактора Препарат Mo-99
Время анализа, ч∗ 0 12,5 22,5 34,5 80,5 46
95Nb 9,51·108 - - - ≤1,07·106 ≤5,81·105
95Zr 2,25·108 2,43·106 - - ≤2,06·106 ≤8,1·105
97Zr 3,00·108 - - - - -
103Ru 1,79·108 <2,21·106 - - ≤3,7·106 ≤9,91·105
125Sb 2,77·107 - - - - -
127Sb 3,33·107 2,44·107 2,54·107 - - -
131I 4,52·109 2,75·109 9,81·108 1,07·108 ≤4,7·106 ≤8,94·105
132I 1,02·109 5,6·108 - - ≤1,82·106 ≤6,79·105
133I 5,17·108 3,07·109 4,83·108 3,98·107 - -
132Te 1.39·109 1.6·107 - - ≤1,85·106 ≤7,43·105
140La 8,78·108 6.7·105 - - ≤2,59·106 ≤4,38·104
140Ba -∗∗ <4,0·107 - - - -
133Ce - 1,45·108 - - - -
141Ce 3,98·106 - - ≤3,28·107 - -
143Ce 1,04·109 - - - - -
144Ce 5,05·107 1,04·107 - - - -
147Nd 3,59·108 5,4·108 - - - -
153Sm 6,06·107 - - - - -
239Np - - - - - -
∑γдр. - - - - - ≤1,44·106
Примечание: ∗ - Время анализа продукта, прошедшее после растворения мишени.
∗∗ - Объемная активность радионуклида ниже предела обнаружения данной методики.

Таблица 2
Сравнение качества препарата молибден-99, полученного по примеру 1, с качеством препарата различных производителей
Контролируемый параметр Производитель (страна) Заявляемое техническое решение
Necsa (ЮАР) British (Англия) Nordion (Бельгия) Nordion (Канада)
I131 ≤5·10-5 ≤5·10-5 ≤5·10-5 ≤5·10-5 2,6·10-6
Ru103 ≤5·10-5 ≤5·10-5 ≤5·10-5 ≤5·10-5 1,5·10-8
Te132 - ≤5·10-5 - ≤5·10-5 He обнаружено
Относительное Il32 - - - - He обнаружено
содержание Sr89 ≤6·10-7 ≤6·10-7 ≤6·10-7 ≤6·10-7 2,8·10-8
радиохимических Sr90 ≤6·10-8 - ≤6·10-8 ≤1,5·10-8 1,7·10-10
примесей, ∑γ ≤1·10-4 - - - -
Ки/Ки 99Mo ∑других γ - ≤1·10-4 - ≤5·10-5 2,2·10-7
∑других β/γ - - ≤1·10-4 - -
∑α ≤1·10-9 ≤1·10-9 ≤1·10-9 ≤1·10-10 <2,3·10-12
Радиохимическая чистота, % - - - - - 96
Химическая форма (среда), моль/дм3 NaOH - Щелочная 1,6-2,4∗ 0,1-0,3 0,3
среда 0,1-0,3∗
HNO3 - - - - -
Активность препарата 99Mo, не менее Объемная, Ku/см3 - 0,01 - 0,35 1,1
Удельная, ГБк (Кu)/г Mo - - 185000 (5000) - -
∗ Концентрация NH4NO3 в препарате может достигать 1 моль/дм3


СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА МОЛИБДЕН-99
Источник поступления информации: Роспатент

Показаны записи 21-30 из 63.
10.07.2015
№216.013.5ff9

Способ хранения и выделения изотопов водорода и устройство для его осуществления

Изобретение относится к области хранения и выделения изотопов водорода и может быть использовано в составе газовых установок высокого и низкого давления. Способ хранения и выделения изотопов водорода заключается в предварительной сорбции газа гидридообразующим металлом, расположенным в...
Тип: Изобретение
Номер охранного документа: 0002556110
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.73e8

Способ регистрации нейтронов в присутствии гамма-излучения

Изобретение относится к области измерении плотности потока нейтронов с помощью различных типов детекторов, в частности пропорциональных и коронных счетчиков медленных нейтронов, импульсных камер деления. Способ регистрации нейтронов в присутствии гамма-излучения с тактовой процедурой измерений...
Тип: Изобретение
Номер охранного документа: 0002561247
Дата охранного документа: 27.08.2015
27.09.2015
№216.013.7fec

Способ получения ионообменного сорбента для очистки сточных вод от тяжелых металлов и органических веществ

Изобретение относится к области промышленной экологии и может быть использовано для очистки сточных вод от тяжелых металлов и органических веществ. Предложен способ получения ионообменного сорбента, представляющего собой сополимер лигносульфоната натрия и полиметилакрилата. Сорбент получен...
Тип: Изобретение
Номер охранного документа: 0002564345
Дата охранного документа: 27.09.2015
27.11.2015
№216.013.9490

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве...
Тип: Изобретение
Номер охранного документа: 0002569651
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.987d

Способ подготовки карбидного оят к экстракционной переработке

Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. В заявленном способе предусмотрена автоклавная обработка азотнокислого раствора карбидного ОЯТ. В процессе такой обработки выпадает молибдат циркония, частично захватывающий плутоний. Полученный в...
Тип: Изобретение
Номер охранного документа: 0002570657
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.c094

Керамический высокопористый блочно-ячеистый сорбент для улавливания радиоактивного йода и его соединений из газовой фазы

Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций. Керамический...
Тип: Изобретение
Номер охранного документа: 0002576762
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c287

Состав экстракционно-хроматографического материала для селективного выделения и очистки прометия-147 от сопутствующих редкоземельных элементов из азотнокислых растворов

Изобретение относится к области химической технологии утилизации высокорадиоактивных растворов, получаемых при переработке облученного ядерного топлива, а именно к составам экстракционно-хроматографических материалов импрегнированного типа для селективного выделения и очистки прометия-147 от...
Тип: Изобретение
Номер охранного документа: 0002574595
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.ce5d

Способ экстракционного выделения молибдена из радиоактивных растворов

Изобретение может быть использовано при подготовке растворов отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС) к экстракционной переработке, при выделении радионуклидов из радиоактивных растворов облученных урановых мишеней в биомедицинских целях, а также при анализе...
Тип: Изобретение
Номер охранного документа: 0002575028
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2e50

Способ приготовления компактного гидрида титана

Изобретение относится к водородной технологии и может быть использовано в качестве элемента биологической защиты ядерных энергетических установок. Образец титана подвергают активации с последующим насыщением водородом. Насыщение проводят при 580-670°C, скорости подачи водорода к образцу не...
Тип: Изобретение
Номер охранного документа: 0002579580
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3972

Способ получения твердого экстракта, обогащенного усниновой кислотой, из слоевищ лишайника рода "cladonia"

Изобретение относится к фармацевтической промышленности, а именно к способу получения экстракта из слоевищ лишайника рода Cladonia. Способ получения экстракта из слоевищ лишайника рода Cladonia путем экстракции сырья диоксидом углерода при определенных условиях, при этом экстракт содержит 85%...
Тип: Изобретение
Номер охранного документа: 0002582978
Дата охранного документа: 27.04.2016
Показаны записи 21-30 из 52.
10.07.2015
№216.013.5ff9

Способ хранения и выделения изотопов водорода и устройство для его осуществления

Изобретение относится к области хранения и выделения изотопов водорода и может быть использовано в составе газовых установок высокого и низкого давления. Способ хранения и выделения изотопов водорода заключается в предварительной сорбции газа гидридообразующим металлом, расположенным в...
Тип: Изобретение
Номер охранного документа: 0002556110
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.73e8

Способ регистрации нейтронов в присутствии гамма-излучения

Изобретение относится к области измерении плотности потока нейтронов с помощью различных типов детекторов, в частности пропорциональных и коронных счетчиков медленных нейтронов, импульсных камер деления. Способ регистрации нейтронов в присутствии гамма-излучения с тактовой процедурой измерений...
Тип: Изобретение
Номер охранного документа: 0002561247
Дата охранного документа: 27.08.2015
27.09.2015
№216.013.7fec

Способ получения ионообменного сорбента для очистки сточных вод от тяжелых металлов и органических веществ

Изобретение относится к области промышленной экологии и может быть использовано для очистки сточных вод от тяжелых металлов и органических веществ. Предложен способ получения ионообменного сорбента, представляющего собой сополимер лигносульфоната натрия и полиметилакрилата. Сорбент получен...
Тип: Изобретение
Номер охранного документа: 0002564345
Дата охранного документа: 27.09.2015
27.11.2015
№216.013.9490

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия

Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве...
Тип: Изобретение
Номер охранного документа: 0002569651
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.987d

Способ подготовки карбидного оят к экстракционной переработке

Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. В заявленном способе предусмотрена автоклавная обработка азотнокислого раствора карбидного ОЯТ. В процессе такой обработки выпадает молибдат циркония, частично захватывающий плутоний. Полученный в...
Тип: Изобретение
Номер охранного документа: 0002570657
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.c094

Керамический высокопористый блочно-ячеистый сорбент для улавливания радиоактивного йода и его соединений из газовой фазы

Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций. Керамический...
Тип: Изобретение
Номер охранного документа: 0002576762
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c287

Состав экстракционно-хроматографического материала для селективного выделения и очистки прометия-147 от сопутствующих редкоземельных элементов из азотнокислых растворов

Изобретение относится к области химической технологии утилизации высокорадиоактивных растворов, получаемых при переработке облученного ядерного топлива, а именно к составам экстракционно-хроматографических материалов импрегнированного типа для селективного выделения и очистки прометия-147 от...
Тип: Изобретение
Номер охранного документа: 0002574595
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.ce5d

Способ экстракционного выделения молибдена из радиоактивных растворов

Изобретение может быть использовано при подготовке растворов отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС) к экстракционной переработке, при выделении радионуклидов из радиоактивных растворов облученных урановых мишеней в биомедицинских целях, а также при анализе...
Тип: Изобретение
Номер охранного документа: 0002575028
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2e50

Способ приготовления компактного гидрида титана

Изобретение относится к водородной технологии и может быть использовано в качестве элемента биологической защиты ядерных энергетических установок. Образец титана подвергают активации с последующим насыщением водородом. Насыщение проводят при 580-670°C, скорости подачи водорода к образцу не...
Тип: Изобретение
Номер охранного документа: 0002579580
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3972

Способ получения твердого экстракта, обогащенного усниновой кислотой, из слоевищ лишайника рода "cladonia"

Изобретение относится к фармацевтической промышленности, а именно к способу получения экстракта из слоевищ лишайника рода Cladonia. Способ получения экстракта из слоевищ лишайника рода Cladonia путем экстракции сырья диоксидом углерода при определенных условиях, при этом экстракт содержит 85%...
Тип: Изобретение
Номер охранного документа: 0002582978
Дата охранного документа: 27.04.2016
+ добавить свой РИД