×
27.07.2015
216.013.6868

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРА РАЗМЕРОВ ВЗВЕШЕННЫХ НАНОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области техники автоматизации измерений, при анализе взвешенных наночастиц. Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа и введении их в перенасыщенные пары низколетучего укрупняющего вещества. Затем осуществляют освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока. Для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков. При этом пять пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую. Далее эти потоки проходят через шесть устройств конденсационного роста и затем поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров. Способ в отличие от известных позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц. Техническим результатом является снижение времени измерений и повышение их точности. 1 ил.
Основные результаты: Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока, отличающийся тем, что для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, затем эти потоки проходят через шесть устройств конденсационного роста и далее поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.

Изобретение относится к аналитическим измерительным системам, связанным с определением микропримесей, в первую очередь аэрозольных и наночастиц, в различных газах и их смесях, в том числе в воздушной атмосфере. Оно может найти применение во многих областях науки и техники, в частности при решении различного рода экологических задач, в создании сверхчистых производственных помещений, при контроле дисперсной фазы для адресной доставки лекарственных средств в органы дыхания.

Известно устройство анализа изображений частиц (Пат. US 2007 0273878 A1, G01N 21/00 от 29.11.2007), содержащее: осветительный блок, блок для захвата изображения и блок обработки изображения. Работа устройства заключается в освещении частиц, захвате полученного изображения и обработке полученных изображений с помощью порогового устройства для анализа извлеченных частиц и получения их морфологических особенностей.

Недостаток данного устройства состоит в том, что оно не позволяет проводить измерения наночастиц.

Известен способ исследования микрообъектов (Пат. RU 2154815, G01N 15/02 от 20.05.1998), который состоит в том, что исследуемые микрообъекты облучают пучком излучения, максимальный линейный размер объема когерентности которого в зоне облучения микрообъектов не превышает 30% от среднего расстояния между частицами в пространстве. С помощью оптической системы формируют изображения исследуемых микрообъектов и после считывания измеряют их геометрические параметры на уровне сигнала, зависящем от когерентности освещения и апертурного угла оптической системы формирования изображения.

Недостаток данного способа состоит в том, что данным способом невозможно определить размеры частиц нанометрового диапазона.

В основе методов измерения концентрации дисперсного состава аэрозольных частиц наноразмеров лежит укрупнение частиц за счет их конденсационного роста в среде пересыщенного пара (например, водяного) и измерение концентрации и размеров выросших капель с помощью обычных оптико-электронных методов.

Процесс конденсации пара на взвешенных в газовой смеси частицах веществ (ядра конденсации) и образования тумана начинается три достижении определенного пересыщения:

S=(p/p0)-1,

где р0 - давление насыщенного пара над плоской поверхностью конденсата; p - давление пара над каплей. В состоянии термодинамического равновесия между каплей и газовой средой p определяют как давление шара в газовой смеси.

При достаточно больших пересыщениях связь радиуса капли r и действующего пересыщения S выражается уравнением Кельвина с поправкой Томсона на электрический заряд ядра:

где σ и ρж - поверхностное натяжение и плотность конденсата; k - постоянная Больцмана; Т - температура газа; m - масса молекулы пара; e - электрический заряд.

Пользуясь формулой (1), нетрудно оценить, какое пересыщение необходимо создать, чтобы капли выросли до граничного размера, который способен зафиксировать оптический прибор.

При достаточно больших пересыщениях (S>3) водяного пара в воздухе центрами конденсации могут быть легкие аэроионы (r<10-7 см, е=1,6·10-19 кл). Все ядра, начиная от r<0,1 мкм вплоть до размеров ионов, называют в литературе ядрами Айткена.

Частицы, проявляющиеся при малых пересыщениях S<0,1 в воздухе, называют облачными ядрами конденсации, т.е. ядрами, на которых образуются капли облаков и туманов.

Первая конструкция счетчиков ядер конденсации описана в 1888 г. Айткеном и затем усовершенствована Шольцем в 1932 г. В этих приборах выросшие в пересыщенном водяным паром воздухе капельки сосчитываются визуально после их седиментации на стеклянной подложке (Беляев С.П., Никифорова Н.К., Смирнов В.В. и др. "Оптико-электронные методы изучения аэрозолей". М.: Энергоиздат, 1981, с.102).

Недостатком первых конструкций счетчиков ядер конденсации является отсутствие автоматического контроля.

Известен способ анализа примесей в газах, основанный на образовании аэрозольных частиц на отдельных молекулах (А.С. 188132, G01N 15/00 от 23.06.1961). На первом этапе для укрупнения самых мелких ядер в газ вводят пересыщенный пар какого-либо весьма малолетучего вещества, например диоктилсебацината. На втором этапе, добавляя при комнатной температуре перенасыщенные пары более летучего вещества, например диизобутилфталата, превращают растущие ядра конденсации в частицы достаточного устойчивого монодисперсного аэрозоля, удобного для нефелометрических или ультрамикроскопических измерений.

Недостатки данного способа заключаются в его эксплуатационных неудобствах. В нем считалось обязательным последовательное воздействие пересыщенного пара сначала проявляющего вещества, потом укрупняющего. Соответственно требуются два однотипных устройства. В первом устройстве вспомогательный малый поток газа контактирует с нагретым веществом проявителя и смешивается с основным потоком газа комнатной температуры, содержащим ядра конденсации. Во втором устройстве другой вспомогательный малый поток контактирует с нагретым веществом укрупнителя и смешивается с основным потоком, поступающим из первого устройства с образованными в нем частицами ультрадисперсного аэрозоля укрупнителя.

Другой эксплуатационный недостаток способа заключается в том, что насыщенные пары во вспомогательных потоках, соприкасаясь с диафрагмой смесителей, частично конденсируются на ней и окисляются на воздухе. Окисленный конденсат представляет собой вязкое, а иногда твердое вещество, которое постепенно забивает отверстие диафрагмы, изменяя режим работы способа.

Для устранения указанных недостатков известны различные способы и устройства образования молекулярных ядер конденсации (МоЯК).

Известно устройство для создания дозированного пересыщения пара веществ в потоке газа (А.С. 1741105 G05D 11/00, B01F 3/02, B01F 15/04 от 15.06.1992), которое содержит соединенные с помощью металлической капиллярной трубки испарительную и смесительную части. В корпусе испарительной части имеется электронагреватель и гильза с носителем испаряемого вещества, предназначенные для насыщения малого потока газа паром вещества при повышенной температуре. Смесительная часть состоит из трубки с соплом для основного разбавляющего потока с ядрами конденсации.

Недостатком данного устройства является сложность конструкции и большие массогабаритные характеристики и энергопотребление соответствующей аппаратуры.

Известен способ определения малых примесей в газе (пат. 2253857 G01N 15/00 от 01.03.2004), который включает образование молекулярных ядер конденсации (МоЯК) в потоке газа из примесей или с их участием, испарение проявляющих и укрупняющих МоЯК веществ путем их дозированного нагрева в потоках газа, образование аэрозольных частиц и измерение их концентрации, определяющей концентрацию примесей. Нагретые потоки газа с испаренными веществами объединяют в общий поток, создают пересыщение смеси паров веществ и образуют аэрозольные частицы совместной конденсацией на МоЯК паров смеси проявляющих и укрупняющих веществ.

Недостаток данного способа заключается в применении в качестве нагревателя проволоки из золота, платины или их сплавов, а также высокое энергопотребление. Кроме этого данный способ не позволяет определять спектр размеров ядер конденсации.

Известен способ укрупнения ядер конденсации и устройство для его осуществления (Пат. 2061219, G01N 15/00 от 27.05.1996), в котором пересыщенный пар укрупняющего вещества получают путем пропускания потока с ядрами в зазор между двумя эквидистантными поверхностями с заданной разностью температур, одна из которых (имеющая более высокую температуру) покрыта укрупняющим веществом. Способ реализуется с помощью устройства, содержащего камеру для создания пересыщения, снабженную охладителем, внутри которой установлен испаритель с электронагревателем. Камера может быть выполнена, например, в форме трубки, а испаритель цилиндрической формы расположен по ее оси.

Недостатком способа является невозможность определять для измеряемых ядер конденсации (наночастиц) спектры их размеров.

Известен способ определения микроконцентрации карбонилов металлов в потоке воздуха (Пат. 2356029 G01N 15/06 от 20.05.2009), который включает превращение молекул карбонила в молекулярные ядра конденсации, последующее проявление и укрупнение ядер в пересыщенных парах проявляющего и укрупняющего детектирующих веществ в конденсационных устройствах и нефелометрическое измерение светорассеяния полученного аэрозоля. При этом превращение молекул карбонила в молекулярные ядра конденсации осуществляют путем пропускания анализируемого потока через нагретую часть трубки проявляющего конденсационного устройства с нанесенным на ее внутренние стенки проявляющим веществом. Проявление ядер осуществляют в пересыщенном паре проявляющего вещества при дальнейшем прохождении потока через охлажденную часть той же трубки.

Недостатком данного способа является невозможность определения размерного спектра измеряемых микроконцентраций.

Наиболее близким по технической сути к предлагаемому способу является способ измерения спектра размеров ядер конденсации аэрозольных частиц и устройство для его реализации (Пат. 2340885, G01N 15/02 от 26.10.2006), включающий пропускание газа (или смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введение их в пересыщенные пары низколетучего укрупняющего вещества, конденсацию паров на ядрах частиц с образованием аэрозоля, концентрацию которого определяют оптическим счетчиком. На этом способе основана также работа диффузионного аэрозольного спектрометра Модели 2702, выпускаемого ООО «АэроНаноТех» (г. Москва).

Недостаток данного способа и основанного на нем спектрометра состоит в том, что расчет спектра размеров частиц осуществляется косвенно с использованием гамма-распределения и решения сложной системы нелинейных алгебраических уравнений, так как анализ спектра размеров укрупненных аэрозольных частиц производится путем последовательного измерения проскоков частиц через пять диффузионных батарей сетчатого типа и канал без батарей (нулевой канал).

Технический результат, который может быть получен при осуществлении изобретения, состоит в снижении времени измерений и повышении их точности.

Этот результат достигается тем, что способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока. Для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, далее эти потоки проходят через шесть устройств конденсационного роста и затем поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.

На фиг.1 представлена общая схема устройства для реализации способа.

Устройство содержит импульсный источник излучения 1, оптическую систему осветителя 2, оптическую систему формирования изображений микрообъектов, состоящую из объективов 3 и 8 и фокусирующих оптическое излучение в области счетного объема потока частиц 7, ПЗС-матрицы 9, аналого-цифрового преобразователя 10, ЭВМ 11. Также устройство содержит входное сопло с каналами подачи 4, диффузионные батареи сетчатого типа 5, устройства конденсационного роста 6 и вакуумный насос (воздуходувку) 12.

Оптическая система осветителя 2 включает систему линз, реализующих, например, любой из известных методов освещения микрообъектов (освещение по Келлеру, методы темного и светлого поля, критическое освещение и т.д.).

Устройство по способу работает следующим образом. Анализируемый поток воздуха или другого газа, содержащего аэрозольные частицы, через входное сопло с каналами подачи 4 пропускается через пять диффузионных батарей 5.1-5.5, представляющих собой ряд сеточек, пропускающих аэрозольные частицы выше определенного размера. Для того чтобы определить концентрацию частиц, прошедших через диффузионные батареи, их необходимо укрупнить до размера, при котором их можно регистрировать ПЗС-матрицей в счетном объеме 7. Это достигается конденсацией паров дибутилфталата на ядрах частиц с образованием аэрозоля в укрупняющем устройстве 6, состоящем из укрупняющих устройств для шести каналов 6.1-.6.6 и дополнительного укрупняющего устройства 6.0 в канале 6.1 для возможности укрупнения наночастиц молекулярного размера. Далее шесть укрупненных потоков частиц поступают в область контроля ПЗС-матрицы 9, формирование изображений на которую обеспечивает оптическая система, содержащая импульсный источник излучения 1, осветитель 2, объективы 3 и 8, фокусирующие оптическое излучение в области счетного объема потока частиц 7. С матрицы ПЗС изображение поступает в аналого-цифровой преобразователь 10 и далее в ЭВМ 11. ЭВМ осуществляет цифровую обработку полученных шести областей, характеризующих пять каналов прохождения отсортированных диффузионными батареями и напрямую (через нулевую батарею) укрупненных частиц с целью определения спектра размеров наночастиц. Также ЭВМ управляет устройством конденсационного роста 6 (6.0-6.6) и вакуумным насосом 12.

Таким образом, рассмотренный способ в отличие от известных позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц.

Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока, отличающийся тем, что для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, затем эти потоки проходят через шесть устройств конденсационного роста и далее поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРА РАЗМЕРОВ ВЗВЕШЕННЫХ НАНОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 115.
20.12.2015
№216.013.9c0d

Устройство объединения изображений в единую композицию с плавным переходом контрастности

Изобретение относится к информационно-измерительным устройствам и может быть использовано в вычислительной технике, в системах управления и обработки сигналов. Технический результат, заключающийся в расширении арсенала технических средств, осуществляющих объединение изображений со сглаживанием...
Тип: Изобретение
Номер охранного документа: 0002571574
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c11

Входной каскад мультидифференциального операционного усилителя для радиационно-стойкого биполярно-полевого технологического процесса

Изобретение относится к области электроники и измерительной техники и может быть использовано в качестве устройства усиления сигналов различных датчиков, например, в мульдифференциальных операционных усилителях (МОУ), в структуре аналоговых микросхем различного функционального назначения,...
Тип: Изобретение
Номер охранного документа: 0002571578
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c12

Прецизионный операционный усилитель для радиационно-стойкого биполярно-полевого техпроцесса

Изобретение относится к области радиотехники. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала. Прецизионный операционный усилитель содержит: входной параллельно-балансный каскад, первый и второй противофазные токовые выходы которого соединены с...
Тип: Изобретение
Номер охранного документа: 0002571579
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9ee2

Измельчитель материала

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, а также в промышленности строительных материалов. Измельчитель содержит раму, опорную плиту, барабан с...
Тип: Изобретение
Номер охранного документа: 0002572311
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f22

Двойной каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является расширение диапазона рабочих частот без ухудшения...
Тип: Изобретение
Номер охранного документа: 0002572375
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f23

Каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных усилителях). Технический результат: расширение диапазона...
Тип: Изобретение
Номер охранного документа: 0002572376
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f26

Реконфигурируемое устройство аппаратной реализации генетического алгоритма

Изобретение относится к вычислительной технике. Технический результат заключается в снижении вычислительных затрат на проведение эволюционного поиска и обеспечении автономности функционирования объекта при принятии решений в изменяющейся среде в автономных интеллектуальных системах....
Тип: Изобретение
Номер охранного документа: 0002572379
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f27

Симметричная активная нагрузка дифференциальных усилителей для биполярно-полевых радиационно-стойких технологических процессов

Изобретение относится к применению симметричных активных нагрузок, обеспечивающих преобразование выходных токов симметричных дифференциальных каскадов и их согласование с промежуточными выходными каскадами. Технический результат заключается в создании радиационно-стойкой и низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002572380
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2f

Транзисторный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения. Технический результат заключается в расширении диапазона рабочих частот без...
Тип: Изобретение
Номер охранного документа: 0002572388
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f30

Быстродействующий драйвер коммутатора разрядного тока цифро-аналогового преобразователя на полевых транзисторах

Изобретение относится к области радиотехники и может использоваться в быстродействующих цифроаналоговых преобразователях (ЦАП), в том числе системах передачи информации. Технический результат заключается в повышении быстродействия и уменьшении искажения спектра выходного сигнала ЦАП. Устройство...
Тип: Изобретение
Номер охранного документа: 0002572389
Дата охранного документа: 10.01.2016
Показаны записи 61-70 из 113.
20.01.2016
№216.013.a3ae

Способ аккумулирования водорода в металлокерамических электродах

Изобретение относится к области водородной энергетики - аккумулированию и хранению водорода, который в настоящее время используется в химическом, транспортном машиностроении и других отраслях промышленности. Согласно изобретению емкость для хранения водорода представляет собой обычный...
Тип: Изобретение
Номер охранного документа: 0002573544
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.c959

Способ определения параметров лчм сигналов

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированными (ЛЧМ) сигналами. Достигаемый технический результат - повышение точности определения ширины спектра ЛЧМ сигнала путем...
Тип: Изобретение
Номер охранного документа: 0002578041
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc84

Двухкаскадный измельчитель материала

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, в промышленности строительных материалов. Измельчитель содержит раму, верхний и дополнительный корпуса,...
Тип: Изобретение
Номер охранного документа: 0002577631
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.dbd6

Широкополосный преобразователь n-токовых входных сигналов в напряжение на основе операционного усилителя

Изобретение относится к области радиотехники и связи и может быть использовано также в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров с токовым выходом. Технический результат - обеспечение подавления синфазной составляющей входных дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002579127
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.030f

Оптико-электронный способ для контроля качества моторного масла

Изобретение относится к технике измерений и позволяет проводить оперативный анализ качества моторного масла. Способ заключается в том, что проводят дозацию подаваемой на анализ пробы, на ленту из фильтровальной бумаги наносят каплю масла, ленту перемещают в положение захвата изображения с...
Тип: Изобретение
Номер охранного документа: 0002587756
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ebf

Самотормозящаяся мельница динамического самоизмельчения

Изобретение относится к дробильно-обогатительному оборудованию для измельчения полезных ископаемых и может быть использовано, в частности, в угольной, рудной, металлургической промышленности, а также в промышленности строительных материалов. Самотормозящая мельница содержит барабан, опирающийся...
Тип: Изобретение
Номер охранного документа: 0002580372
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3138

Источник опорного напряжения

Изобретение относится к области электротехники и может быть использовано в качестве температурно-стабильного источника опорного напряжения (ИОН). Технический результат заключается в обеспечении минимального температурного коэффициента выходного напряжения ИОН при пониженной разности напряжений...
Тип: Изобретение
Номер охранного документа: 0002580458
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.331f

Оптико-электронный способ измерения концентрации газов

Изобретение относится к аналитическому приборостроению и может быть использовано для систем автоматического измерения концентрации газов. Способ измерения концентрации газов основан на измерении смещения интерференционной картины, которая находится на пути одного из лучей, способных...
Тип: Изобретение
Номер охранного документа: 0002582234
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3340

Оптико-электронное устройство для измерения концентрации газов

Изобретение относится к аналитическому приборостроению и может быть использовано для систем автоматического измерения концентрации газов. Устройство для измерения концентрации газов содержит химический поглотительный патрон, оптическую систему, состоящую из конденсорной линзы,...
Тип: Изобретение
Номер охранного документа: 0002582307
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.33ad

Оптико-электронное устройство для контроля качества моторного масла

Изобретение относится к технике измерений и может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Оптико-электронное устройство для контроля качества...
Тип: Изобретение
Номер охранного документа: 0002582296
Дата охранного документа: 20.04.2016
+ добавить свой РИД