×
20.03.2016
216.014.c959

СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированными (ЛЧМ) сигналами. Достигаемый технический результат - повышение точности определения ширины спектра ЛЧМ сигнала путем учета взаимного перемещения носителя ИРИ и носителя автокорреляционного приемника (АКП). Указанный технический результат достигается за счет определения радиальных скоростей движения носителей источника радиоизлучения и приемника, средней длины волны ЛЧМ сигналов, измерения периода следования ЛЧМ сигналов и определения ширины спектра ЛЧМ сигналов по формуле: где f(n) - разностная частота сигнала на выходе автокорреляционного приемника, τ - время задержки принятого ЛЧМ сигнала, τ - длительность ЛЧМ сигнала, V(nT) - радиальная скорость движения носителя источника радиоизлучения, V(nT) - радиальная скорость движения носителя приемника, T - период следования ЛЧМ сигналов, λ - средняя длина волны ЛЧМ сигналов, , N - количество ЛЧМ сигналов. 4 ил.
Основные результаты: Способ определения параметров ЛЧМ сигналов, заключающийся в приеме ЛЧМ сигналов автокорреляционным приемником, измерении разностной частоты и определении длительности импульса и ширины спектра сигнала, отличающийся тем, что дополнительно определяют радиальные скорости движения носителей источника радиоизлучения и приемника, среднюю длину волны ЛЧМ сигналов, измеряют период следования ЛЧМ сигналов и определяют ширину спектра ЛЧМ сигналов по формуле: где f(n) - разностная частота сигнала на выходе автокорреляционного приемника, τ - время задержки принятого ЛЧМ сигнала, τ - длительность ЛЧМ сигнала, V (nТ) - радиальная скорость движения носителя источника радиоизлучения, V(nТ) - радиальная скорость движения носителя приемника, Т - период следования ЛЧМ сигналов, λ - средняя длина волны ЛЧМ сигналов, N - количество ЛЧМ сигналов.
Реферат Свернуть Развернуть

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с ЛЧМ сигналами.

Известны следующие методы и способы измерения параметров сигналов с частотной модуляцией [Смирнов Ю.А. Радиотехническая разведка. - М.: Воениздат, 2001, с. 129-133]: с помощью неперестраиваемого и перестраиваемого радиоприемного устройства, функциональный метод, метод свертки спектра сигнала.

Наиболее близким по технической сущности (прототипом к предлагаемому изобретению) является метод технического анализа сложных сигналов в средствах радиотехнического мониторинга (РТМ), заключающийся в сравнении сигнала с его задержанной копией на выходе автокорреляционной схемы [Смирнов Ю.А. Радиотехническая разведка. - М.: Воениздат, 2001, с. 125-128], основанный на приеме сигнала автокорреляционным приемником (АКП), определении длительности импульса τu методом генератор-пересчетной схемы [Смирнов Ю.А. Радиотехническая разведка, - М.: Воениздат, 2001, с. 108-111] и определении ширины спектра сигнала Δfc согласно выражению (фиг. 1):

где fp - разностная частота сигнала на выходе АКП, τз - длительность задержки сигнала.

Недостатком устройства-прототипа является наличие большой ошибки в определении ширины спектра ЛЧМ сигналов Δfc в случае быстрого взаимного перемещения носителя ИРИ (например, космического аппарата (КА) с РЛС) и носителя АКП при определении параметров ЛЧМ сигналов.

Технический результат, на достижение которого направлено заявляемое изобретение, выражается в повышении точности определения ширины спектра ЛЧМ сигнала Δfc путем учета взаимного перемещения носителя ИРИ и носителя АКП.

Указанный технический результат достигается реализацией в цифровом виде процедур учета доплеровского смещения частоты принимаемого сигнала, обусловленного взаимным перемещением носителя ИРИ и носителя АКП.

Сущность способа заключается в том, что дополнительно определяют радиальные скорости движения носителей источника радиоизлучения и приемника, измеряют период следования и длину волны ЛЧМ импульсов и определяют ширину спектра ЛЧМ импульсов.

В предлагаемом способе выполняется следующая последовательность операций (фиг. 2):

1. Прием сигнала Sвх(t) АКП и его фильтрация. С учетом движения носителя ИРИ и носителя АКП ЛЧМ сигнал в общем виде опишем следующим образом:

где t∈[ts; tsu], , N - номер излучаемого импульса, f0 - несущая частота входного сигнала, V(nTu) - радиальная скорость носителя ИРИ в момент приема n-го зондирующего сигнала, V(nTu) - радиальная скорость носителя АКП в момент приема n-го зондирующего сигнала, λ - средняя длина волны зондирующего импульса, Tu - период следования зондирующего импульса;

где - расстояние, преодолеваемое n-м импульсом.

Причем, когда Δfc больше полосы фильтра, возможен вариант приема сигнала несколькими фильтрами. Тогда ширина спектра сигнала будет оцениваться следующим образом:

где n - номер фильтра.

2. Задержка копии сигнала Sвх(t) в линии задержки на время τз.

3. Перемножение сигнала Sвх(t) с его задержанной копией Sвх(t-τз). Сигнал на выходе перемножителя АКП Sx(t) принимает вид:

4. Фильтрация низкочастотной составляющей сигнала Sx(t):

Сигнал Sнч(t,n) будет иметь дополнительный набег фазы от импульса к импульсу при условии, что V и V изменяются.

5. Измерение разностной частоты линейкой доплеровских фильтров. Из выражения (8) с учетом (3)-(5) разностная частота fp(n) и фаза принятого зондирующего импульса φ(Tu) в случае взаимного встречного (или противоположно направленного) движения носителя ИРИ и(или) носителя АКП зависят от V, V, Tu, λ:

где

6. Определение длительности импульса τu, например, методом генератор-пересчетной схемы [Смирнов Ю.А. Радиотехническая разведка. - М.: Воениздат, 2001, с. 108-111].

7. Вычисление радиальной скорости движения носителя ИРИ V(nTu)

где ρИ - радиус-вектор носителя ИРИ, VИ - вектор скорости носителя ИРИ, |ρИ| - дистанция между носителем ИРИ и носителем АКП.

Модуль вектора скорости движения носителя РЛС |VИ| может быть рассчитан следующим образом:

где fгр - гравитационная постоянная, МЗ - масса Земли, RЗ - радиус Земли, h - высота полета КА РЛС.

Например, можно определять радиальную скорость космического аппарата (КА) - носителя РЛС на основе данных орбитальной модели SGP4 [Hoots F.R., Roehrich R.L. SpaceTrack Report #3. [Электронный ресурс]], которая позволяет осуществить предсказание орбитального положения КА.

8. Определение радиальной скорости движения носителя АКП V(nTu) в инерциальной навигационной системе (ИНС) [П.В. Бромберг. Теория инерциальных систем навигации. - М.: Наука, 1979, с. 71-122].

9. Определение периода следования ЛЧМ импульсов Tu, например, методом генератор-пересчетной схемы [Смирнов Ю.А. Радиотехническая разведка. - М.: Воениздат, 2001, с. 108-111].

10. Определение средней длины волны принимаемого импульса λ. Средняя длина волны λ рассчитывается следующим образом:

где c - скорость света, fcp - средняя частота спектра сигнала, определяемая как центральная частота высокочастотного фильтра на входе приемника.

11. Определение ширины спектра сигнала Δfc согласно выражению

Таким образом, в предлагаемом способе определения параметров ЛЧМ сигналов новыми существенными признаками изобретения являются вновь введенные процедуры 7-11.

Способ может быть реализован, например, с помощью автокорреляционного приемника с элементами цифровой обработки сигналов. Оцифровка сигнала может осуществляться как на частоте сигнала f0, так и на разностной частоте fP. Наиболее предпочтительным является вариант оцифровки на разностной частоте fp, так как для этого могут быть применены сравнительно простой аналого-цифровой преобразователь (АЦП) с частотой дискретизации до десятков МГц и программируемая логическая интегральная схема (ПЛИС) с меньшим количеством вентилей, реализующая цифровую доплеровскую фильтрацию сигналов.

На фиг. 3 изображена структурная схема предлагаемого способа, состоящая из ИНС 1, полосового фильтра высоких частот 2, вычислительного устройства №13, ответвителя 4, умножителя 5, линии задержки 6, полосового фильтра низких частот 7, АЦП 8, вычислительного устройства №29, реализующего алгоритм вычисления согласно выражению (20).

Определим влияние движения носителя АКП на точность определения разностной частоты в РЛС космического базирования. Исходя из условий однозначности по азимуту имеют место следующие ограничения на период следования зондирующих импульсов РЛС [Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для ВУЗов./Под ред. Г.С.Кондратенкова. - М.: «Радиотехника», 2005, с. 122-134]:

где Δl - разрешающая способность РЛС по азимуту.

При малом аргументе tg(λ/4Δl) получим следующее выражение:

Тогда с учетом выражений (9) и (17) получим:

Полоса пропускания цифрового доплеровского фильтра при условии и τвыборки=Tu:

а измеренная разностная частота:

С использованием выражения (20) при условии движения носителя РЛС и носителя АКП навстречу друг другу (или в противоположные стороны) проведен расчет зависимости разностной частоты fp(n) от разрешающей способности по азимуту Δl для различных диапазонов частот (9,5 ГГц, 36 ГГц) при τu=20; 100 мкс и ширине спектра зондирующего импульса Δfс=2; 15 МГц. При изменении разрешающей способности по азимуту Δl от 0,5 м до 10 м (для Δfc=15 МГц до 75 м) разностная частота fp(n) изменяется в пределах 200 Гц. Из выражения (19) следует, что полоса пропускания доплеровского фильтра Δfнч изменяется от 100 Гц до 750 Гц и, следовательно, изменение разностной частоты fp(n) оказывает влияние на точность определения Δfc особенно при значениях Δfc меньше чем 4 МГц. Следовательно, в данном случае необходимо учитывать взаимное перемещение носителя РЛС и носителя АКП при обработке сигналов.

Предложенное техническое решение является новым, поскольку из общедоступных сведений неизвестны способы, позволяющие определять параметры ЛЧМ сигналов при помощи автокорреляционного приемника с элементами цифровой обработки сигналов при наличии доплеровского смещения их частоты.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы стандартные радиоэлектронные устройства и средства. Расчет переменных выражения (15) может выполняться, например, в сигнальном процессоре ADSP-2181 путем реализации типовых ассемблерных процедур среды разработки Visual DSP++ (суммирования (процедуры 1 и 7 на фиг. 4), умножения (процедуры 2, 3 и 5 на фиг. 4) и деления (процедуры 4 и 6 на фиг. 4)) [Вальпа О.Д. Разработка устройств на основе цифровых сигнальных процессоров фирмы Analog Devices с использованием Visual DSP++. - М.: Горячая линия. - Телеком, 2007, стр. 266].

Способ определения параметров ЛЧМ сигналов, заключающийся в приеме ЛЧМ сигналов автокорреляционным приемником, измерении разностной частоты и определении длительности импульса и ширины спектра сигнала, отличающийся тем, что дополнительно определяют радиальные скорости движения носителей источника радиоизлучения и приемника, среднюю длину волны ЛЧМ сигналов, измеряют период следования ЛЧМ сигналов и определяют ширину спектра ЛЧМ сигналов по формуле: где f(n) - разностная частота сигнала на выходе автокорреляционного приемника, τ - время задержки принятого ЛЧМ сигнала, τ - длительность ЛЧМ сигнала, V (nТ) - радиальная скорость движения носителя источника радиоизлучения, V(nТ) - радиальная скорость движения носителя приемника, Т - период следования ЛЧМ сигналов, λ - средняя длина волны ЛЧМ сигналов, N - количество ЛЧМ сигналов.
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 232.
10.04.2013
№216.012.31c5

Способ стимуляции половой охоты и синхронизации овуляции у свиноматок

Изобретение относится к области животноводства. Свиноматкам на 35-42 день после опороса, в день отъема поросят, утром, однократно вводят фоллимаг в дозе 1000 И.Е./ голову. Через 70-72 часа проводят выборку свиноматок в охоте. Свиноматкам, проявившим рефлекс неподвижности дополнительно вводят...
Тип: Изобретение
Номер охранного документа: 0002478284
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4dbb

Способ анализа взвешенных частиц

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях пауки и техники, связанных с анализом взвешенных частиц. Способ состоит в том, что поток частиц...
Тип: Изобретение
Номер охранного документа: 0002485481
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.51d0

Устройство искажения радиолокационного изображения объекта

Изобретение относится к области радиоподавления радиолокационных станций (РЛС), в частности, может быть использовано при разработке станций помех РЛС с синтезированной апертурой антенны (PCА). Достигаемый технический результат - обеспечение постоянной наименьшей вероятности правильного...
Тип: Изобретение
Номер охранного документа: 0002486537
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51d1

Устройство искажения радиолокационного изображения объекта

Изобретение относится к области радиоподавления радиолокационных станций (РЛС), в частности, может быть использовано при разработке станций помех РЛС с синтезированной апертурой антенны (PCА). Достигаемый технический результат - снижение вероятности правильного обнаружения объекта до заданной...
Тип: Изобретение
Номер охранного документа: 0002486538
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7f54

Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла...
Тип: Изобретение
Номер охранного документа: 0002498269
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8a19

Способ обнаружения электронных устройств

Изобретение относится к способам и технике нелинейной радиолокации и может использоваться для поиска и обнаружения электронных устройств, в том числе объектов с нелинейными электрическими свойствами (ОНЭС). Достигаемый технический результат - обеспечение возможности одновременной согласованной...
Тип: Изобретение
Номер охранного документа: 0002501035
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.956d

Способ анализа взвешенных частиц

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц. Способ состоит в том, что поток частиц...
Тип: Изобретение
Номер охранного документа: 0002503947
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9571

Способ обнаружения пылеотложения на печатных платах радиоэлектронной аппаратуры

Изобретение относится к способам обнаружения пылеотложения с учетом уровня влажности на печатных платах радиоэлектронной аппаратуры, к устройствам обнаружения пылеотложения с учетом уровня влажности на печатных платах, при возникновении которого возникают токи утечки. Способ обнаружения...
Тип: Изобретение
Номер охранного документа: 0002503951
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9572

Устройство обнаружения пылеотложения на печатных платах радиоэлектронной аппаратуры

Изобретение относится к устройствам обнаружения пылеотложения с учетом влажности на печатных платах радиоэлектронной аппаратуры, при возникновении которого возникают токи утечки. Периодически излучаются световые импульсы двумя светодиодами с длиной волны λ=565 нм и двумя светодиодами с длиной...
Тип: Изобретение
Номер охранного документа: 0002503952
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.988e

Фотоэлектрический способ определения размеров и концентрации взвешенных частиц

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей. Способ определения размеров и концентрации взвешенных частиц включает зондирование...
Тип: Изобретение
Номер охранного документа: 0002504753
Дата охранного документа: 20.01.2014
Показаны записи 1-10 из 241.
10.12.2013
№216.012.8a19

Способ обнаружения электронных устройств

Изобретение относится к способам и технике нелинейной радиолокации и может использоваться для поиска и обнаружения электронных устройств, в том числе объектов с нелинейными электрическими свойствами (ОНЭС). Достигаемый технический результат - обеспечение возможности одновременной согласованной...
Тип: Изобретение
Номер охранного документа: 0002501035
Дата охранного документа: 10.12.2013
27.03.2014
№216.012.aeef

Способ определения концентрации и среднего размера частиц пыли

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью....
Тип: Изобретение
Номер охранного документа: 0002510498
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.af02

Нелинейный радиолокатор обнаружения радиоэлектронных устройств

Изобретение относится к области техники нелинейной радиолокации и может использоваться для поиска и обнаружения радиоэлектронных устройств и других объектов с нелинейными электрическими свойствами (ОНЭС). Достигаемый технический результат - стабилизация вероятности обнаружения ОНЭС различного...
Тип: Изобретение
Номер охранного документа: 0002510517
Дата охранного документа: 27.03.2014
20.10.2014
№216.013.0055

Устройство для сжигания топлива в газотурбинном двигателе

Устройство для сжигания топлива в газотурбинном двигателе содержит наружный и внутренний корпусы, образующие кольцевую полость, в которой установлены неподвижные и подвижные разделители потоков, образующие чередующиеся первичные и вторичные каналы. На наружном корпусе кольцевой полости в каждом...
Тип: Изобретение
Номер охранного документа: 0002531477
Дата охранного документа: 20.10.2014
10.12.2014
№216.013.0cea

Способ определения параметров взвешенных частиц произвольной формы

Изобретение относится к технике автоматизации измерений и может быть использовано при анализе взвешенных частиц произвольной формы. Согласно способу производят освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых частицами при их пролете через...
Тип: Изобретение
Номер охранного документа: 0002534723
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.2169

Способ адаптивного оптико-электронного наблюдения

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных...
Тип: Изобретение
Номер охранного документа: 0002540001
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.216a

Способ оптико-электронного наблюдения

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности обнаружения и наблюдения подстилающей поверхности. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002540002
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.21e1

Способ пространственного мониторинга источников электромагнитного излучения

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность...
Тип: Изобретение
Номер охранного документа: 0002540126
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.251a

Способ определения количества целей в группе

Изобретение относится к области радиолокации и может быть использовано в радиолокационной технике для оценки количества целей в группе. Достигаемым техническим результатом является повышение вероятности правильного определения количества целей в группе при радиолокационном наблюдении...
Тип: Изобретение
Номер охранного документа: 0002540951
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c5

Способ контроля эффективности защиты информации

Изобретение относится к способам контроля эффективности защиты речевого сигнала от утечки по техническим каналам. Технический результат заключается в повышении достоверности оценки защищенности речевой информации. Измеряют октавные уровни сигнала и шума в выбранной контрольной точке. Определяют...
Тип: Изобретение
Номер охранного документа: 0002541122
Дата охранного документа: 10.02.2015
+ добавить свой РИД