×
20.07.2015
216.013.6465

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС СЕЛЕКТИВНОГО ГИДРООБЕССЕРИВАНИЯ ОЛЕФИНСОДЕРЖАЩЕГО УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализатору селективного гидрообессеривания олефинсодержащего углеводородного сырья. Данный катализатор состоит из соединений металлов Со или Ni, Mo и Na или К, нанесенных на носитель. При этом предлагаемый катализатор содержит биметаллическое комплексное соединение металлов Со или Ni, Mo и Na или К, карбоновую кислоту, содержащую, по меньшей мере, одну карбоксильную группу и 1-20 углеродных атомов; он имеет удельную поверхность 180-350 м/г, объем пор 0,3-1,1 см/г, средний диаметр пор 5,5-11,0 нм. Предлагаемый катализатор позволяет получать бензин с ультранизким содержанием серы и сохранением значения его октанового числа на исходном уровне. Изобретение также относится к способу приготовления такого катализатора, а также к процессу селективного гидрообессеривания с его использованием. 3 н. и 11 з.п. ф-лы, 3 табл., 9 пр.

Изобретение относится к области химии, в частности к катализаторам для селективного гидрообессеривания олефинсодержащего углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Одной из важнейших задач нефтеперерабатывающей промышленности Российской Федерации является увеличение глубины переработки нефти. Это возможно только с повышением доли процессов глубокой переработки (каталитического крекинга, гидрокрекинга, коксования, термического крекинга) в структуре нефтеперерабатывающих предприятий. На фоне постоянного ухудшения качества нефтей (утяжеления, снижения содержания фракций, выкипающих до 350°C, роста концентраций гетероатомных соединений и т.д.) происходит и ужесточение экологических требований к моторным топливам. Ожидаемое увеличение парка легковых автомобилей в России к 2015 г. (почти в 1,5 раза), в основном за счет автомобилей, соответствующих экологическому классу 4, уже сейчас требует подготовки к выпуску бензинов, отвечающих требованиям класса 4 и 5 технического регламента.

В современных бензинах ограничивается содержание ароматических углеводородов (в т.ч. бензола), серы и непредельных соединений. Наиболее жесткие требования связаны с содержанием общей серы в моторных топливах. Так, для автомобильного бензина согласно техническому регламенту ограничивается содержание серы на уровне менее 150 ppm (класс 3), 50 ppm (класс 4) и 10 ppm (класс 5). Требования по химическому составу меняют и существующую схему производства бензинов: снижается доля риформата, увеличиваются доли бензина каталитического крекинга, изомеризата и алкилата. Учитывая относительно невысокую производительность установок каталитической изомеризации и алкилирования, основная нагрузка по формированию бензинового фонда остается за бензином каталитического крекинга, но даже на современных установках (типа FCC) не удается получить компонент автобензина классов 4 и 5, поскольку высокооктановые бензины каталитического крекинга являются источниками 90% серы при компаундировании товарных топлив.

Для снижения содержания серы в бензинах каталитического крекинга используют два способа - предварительная гидроочистка сырья установки каталитического крекинга и гидроочистка бензина каталитического крекинга. Проблему сложно решить путем предварительной гидроочистки сырья каталитического крекинга, поскольку необходима сверхглубокая очистка вакуумного газойля (до содержания общей серы менее 200 ppm) от трудноудаляемых стерически экранированных сероорганических соединений. Гидроочистка бензина каталитического крекинга (второй способ) на стандартных Al-Ni(Co)-Mo(W) катализаторах протекает не селективно, наряду с реакциями гидродесульфуризации происходит глубокое гидрирование олефиновых углеводородов, что уменьшает октановое число очищенного бензинового компонента.

Разработка современных катализаторов селективного гидрогенолиза серосодержащих соединений олефинсодержащего углеводородного сырья является наиболее эффективным решением данной проблемы.

Для создания катализаторов селективной гидроочистки бензинов каталитического крекинга и олефинсодержащего сырья используют методы формирования активного компонента на поверхности оптимального по текстуре и свойствам носителя за счет следующих подходов:

1. Использование в составе носителей и/или катализаторов щелочных и щелочно-земельных металлов, подавляющих гидрирующую функцию катализаторов (US 5348928, B01J 21/04, B01J 23/78, В01J 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998). Недостатком таких катализаторов является низкая концентрация доступных активных центров, что не позволяет глубоко протекать реакциям гидрообессеривания для получения компонента товарного бензина с ультранизким содержанием серы.

2. Применение органических модификаторов, повышающих степень сульфидирования нанесенного активного предшественника, и селективность в реакциях гидрообессеривания по отношению к реакциям гидрирования олефинов (US 8236723, B01J 31/34, B01J 21/08, C10G 45/08, 07.08.2012; WO 2007/084438 А2, B01J 23/882, C10G 45/08, 26.07.2007; WO 2007/084439 A1, C10G 45/08, B01J 23/882, B01J 21/08, B01J 35/10, 26.07.2007). Недостатком синтеза таких катализаторов является наличие гидрирующих центров на поверхности активной фазы, что не позволяет провести селективную гидроочистку олефинсодержащего углеводородного сырья, особенно при получении гидрогенизата с содержанием серы менее 50 ppm.

Общим недостатком для вышеперечисленных катализаторов является низкая селективность по отношению к реакциям гидрирования олефинов при высокой глубине гидрообессеривания, и как результат, снижение октанового числа до 5 п. по сравнению с исходным бензином. Техническим решением настоящего изобретения является создание высокодисперсной активной фазы с высокой долей активных центров за счет использования биметаллического комплекса и органического модификатора, а также подавление центров гидрирования благодаря использованию металла I-A группы. Способ приготовления катализатора пропиткой совместным раствором всех элементов позволяет обеспечить молекулярный контакт предшественников, необходимый для формирования активной фазы оптимального состава и морфологии для проведения селективной гидроочистки олефинсодержащего углеводородного сырья.

Наиболее близким к предлагаемому решению является катализатор селективной гидроочистки и способ его приготовления, описанные в патенте US 5348928, B01J 21/04, B01J 23/78, В01J 23/88, B01J 37/04, 20.09.1994. Катализатор включает гидрирующий компонент - металлы из группы VIB и VIII Периодической таблицы с содержанием 4-20% мас. и 0.5-10% мас. в пересчете на оксиды соответственно. Носитель катализатора включает магний в количестве 0.5-50% мас. в пересчете на оксид, щелочной металл в количестве 0.02-10% мас.

Способ приготовления селективного катализатора гидроочистки бензина каталитического крекинга включает следующие операции: приготовление первого водного раствора, содержащего растворенные соединения металлов VIB и VIII групп; смешение первого раствора с неорганическим оксидом и образованием пасты, включающей металлы VIB и VIII групп; превращение пасты в композит, по меньшей мере, одной из форм, перечисленных из ряда: шарик, порошок, таблетки, экструдаты; приготовление второго водного раствора, включающего растворенные соединения магния и щелочного металла; смешение второго водного раствора с композитом и получением пропитанного композита; прокаливание полученного композита с получением катализатора селективной гидроочистки.

Недостатком данного способа приготовления катализатора является то, что используются предшественники металлов из группы VIB и VIII Периодической таблицы, не позволяющие сформировать высокодисперсную активную фазу с высоким содержанием активных центров. В результате, во-первых, не достигается степень гидрообессеривания олефинсодержащего сырья выше 95.5%, во-вторых, при степени гидрообессеривания 80% и выше происходит гидрирование олефиновых углеводородов до 65%, т.е. снижается селективность процесса и, как следствие, октановое число получаемого бензина. Таким образом, каталитические свойства катализатора-прототипа не позволяют получать бензина с ультранизким содержанием серы, сохранением содержания олефиновых углеводородов и значений октанового числа.

Техническим результатом настоящего изобретения является создание нового катализатора, способа приготовления и процесса селективного гидрообессеривания олефинсодержащего углеводородного сырья. Технический результат достигается за счет катализатора селективного гидрообессеривания олефинсодержащего углеводородного сырья, состоящего из соединений металлов Со или Ni, Mo и Na или К, нанесенных на носитель. Катализатор содержит биметаллическое комплексное соединение металлов Со или Ni, Mo и Na или К, карбоновую кислоту, содержащую, по меньшей мере, одну карбоксильную группу и 1-20 углеродных атомов; катализатор имеет удельную поверхность 180-350 м2/г, объем пор 0,3-1,1 см3/г, средний диаметр пор 5,5-11,0 нм. В качестве носителя используют оксид алюминия, оксид кремния или их композиции. Биметаллическое комплексное соединение содержит как минимум один из следующих гетерополианионов [Co2Mo10O38H4]6-, [Co(OH)6Mo6O18]4-, [Ni(OH)6Mo6O18]4-, [Ni2Mo10O38H4]6-, [P2Mo5O23]6-, [SiMo12O40]4-, [PMo12O40]3-, при этом содержание в прокаленном при 550°С катализаторе МоО3 составляет 14,0-23,0% мас, СоО или NiO - 4,0-6,5% мас. оксида калия (натрия) - 5-10% мас. Катализатор имеет форму цилиндров или трехлистников.

Способ приготовления катализатора селективного гидрообессеривания олефинсодержащего углеводородного сырья пропиткой носителя по влагоемкости или с избытком раствором предшественников активного компонента заключается в том, что носитель однократно пропитывают водным раствором, имеющим pH 2,5-4,0, содержащим как минимум один из гетерополианионов ряда [Co2Mo10O38H4]6-, [Co(OH)6Mo6O18]4-, Ni(OH)6Mo6O18]4-, [Ni2Mo10O38H4]6-, [P2Mo5O23]6-, [SiMo12O40]4-, [PMo12O40]3-, в качестве соединения кобальта используется одно из ряда гидроксид кобальта Co(OH)2·nH2O, (n=0,5-5) кобальт углекислый CoCO3, кобальт углекислый основной 2CoCO3·3Co(OH)2·nH2O, (n=0,5-5) в качестве соединения металла I-A группы используется любое из ряда гидроксид калия KOH, карбонат калия K2CO3, гидроксид натрия NaOH, карбонат натрия Na2CoO3, в качестве стабилизатора пропиточного раствора используют карбоновую кислоту, содержащую, по меньшей мере, одну карбоксильную группу и 1-20 углеродных атомов.

Способ приготовления катализатора заключается в том, что гетерополианион [P2Mo5O23]6- или [PMo12O40]3- формируется путем последовательного растворения оксида молибдена MoO3 или молибденовой кислоты H2MoO4 в 85%-ой фосфорной кислоте H3PO4 и добавлении 30%-го раствора H2O2, при температуре 50-90°C и pH 1,0-1,5 в соотношениях, соответствующих стехиометрии в гетерополианионе. Один из гетерополианионов [Co2Mo10O38H4]6-, [Co(OH)6Mo6O18]4-, [Ni(OH)6Mo6O18]4-, [Ni2Mo10O38H4]6- формируется путем последовательного растворения оксида молибдена MoO3 или молибденовой кислоты H2MoO4 в 30%-ом растворе пероксида водорода при температуре 50-90°C, с последующим добавлением соли Co или Ni в соотношениях, соответствующих стехиометрии в гетерополианионе. Для приготовления катализатора в качестве стабилизатора используется лимонная кислота, используют либо пропитку носителя по влагоемкости, либо из избытка раствора, пропитка гранул носителя проводится после создания вакуума в сосуде, содержащем носитель, или после создания вакуума проводится пропиточным раствором при температурах 20-50°C. После пропитки катализатор сушат при температуре 120-180°C в потоке воздуха или азота.

Процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья, который включает пропускание олефинсодержащего углеводородного сырья через слой заявляемого катализатора. Процесс проводят при температуре 220-320°C, давлении 0,5-3,0 МПа, объемном расходе сырья 4-12 ч-1, объемном отношении водород/сырье 50-300 м33.

Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.

Катализатор готовят пропиткой 100 г оксида алюминия раствором 3.9 г нитрата кобальта Co(NO3)2·6H2O, 7.4 г молибдата аммония в 58.7 воды. Полученные образцы сушили при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч. Затем полученный образец (100 г) пропитывали 6.37 г Mg(NO3)2·6H2O в 58.7 г воды. Снова проводили сушку при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 5,5% мас. MoO3, 1,0% мас. CoO, 0,9% MgO, 0,3% Na2O (табл. 1).

Пример 2

Для приготовления пропиточного раствора 37,6 г декамолибдодикобальтовой гетерополикислоты H6[Co2Mo10O38H4] и 11,9 г карбоната кобальта CoCO3·nH2O растворяют в 65 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 в полученный раствор добавляют 23,4 г моногидрата лимонной кислоты C6H8O7·H2O и 23,4 г карбоната натрия Na2CO3·H2O, перемешивают до прекращения выделения CO2 и доводят объем водой до 92 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 10% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 21,0% мас. MoO3, 5,5% мас. CoO и 7,7% мас. Na2O (табл. 1).

Пример 3

Для приготовления пропиточного раствора 26,4 г гексамолибдокобальтовой гетерополикислоты H4[Co(OH)6Mo6O18] и 7,9 г карбоната кобальта CoCO3·nH2O растворяют в 65 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 в полученный раствор добавляют 15,4 г моногидрата лимонной кислоты C6H8O7·H2O и 15,0 г карбоната калия K2CO3, перемешивают до прекращения выделения CO2 и доводят объем водой до 81 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 16,1% мас. MoO3, 4,0% мас. CoO и 7,4% мас. K2O (табл. 1).

Пример 4

Для приготовления пропиточного раствора 27,3 г гексамолибдоникелевой гетерополикислоты H4[Ni(OH)6Mo6O18] и 8,5 г гидроксокарбоната никеля NiCO3·nNi(OH)2·mH2O растворяют в 65 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 в полученный раствор добавляют 16,7 г моногидрата лимонной кислоты C6H8O7·H2O и 14,7 г карбоната калия K2CO3, перемешивают до прекращения выделения CO2 и доводят объем водой до 81 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 16,5% мас. MoO3, 4,3% мас. CoO и 7,2% мас. K2O (табл. 1).

Пример 5

Для приготовления пропиточного раствора 22,2 г оксида молибдена растворяют в 70 см3 воды при добавлении 4,0 г 85%-ного раствора ортофосфорной кислоты и температуре 60-90°C. Далее в полученный раствор добавляют 8,2 г гидрокарбоната кобальта CoCO3·nCo(OH)2·mH2O, 16,0 г моногидрата лимонной кислоты C6H8O7·H2O и 12,4 г карбоната калия K2CO3. После окончания выделения CO2 объем полученного раствора доводят водой до 83 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 16,3% мас. MoO3, 4,2% мас. CoO и 6,2% мас. K2O (табл. 1).

Пример 6

Для приготовления пропиточного раствора 34,2 г кобальтовой соли пентамолибдодифосфорной кислоты Co3[P2Mo5O23] растворяют в 70 см3 воды, далее добавляют 16,6 г лимонной кислоты C6H8O7 и 11,2 г карбоната калия K2CO3. Далее объем полученного раствора доводят водой до 83 см3. pH пропиточного раствора равен 2.5-3.5.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 16,4% мас. MoO3, 4,3% мас. CoO и 6,8% мас. K2O (табл. 1).

Пример 7

Для приготовления пропиточного раствора 36,5 г додекамолибдофосфорной кислоты H3[PMo12O40] растворяют в 60 см3 воды при добавлении 10,7 г гидрокарбоната кобальта CoCO3·nCo(OH)2·mH2O и 21,1 г лимонной кислоты C6H8O7. После окончания выделения CO2 в полученный раствор добавляют 16,1 г карбоната калия K2CO3. После окончания выделения CO2 объем полученного раствора доводят водой до 83 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 19,5% мас. MoO3, 5,0% мас. CoO и 9,0% мас. K2O (табл. 1).

Пример 8

Для приготовления пропиточного раствора 35,7 г додекамолибдофосфорной кислоты H3[PMo12O40] растворяют в 80 см3 воды при добавлении 10,5 г гидрокарбоната кобальта CoCO3·nCo(OH)2·mH2O и 20,6 г лимонной кислоты C6H8O7. После окончания выделения CO2 в полученный раствор добавляют 16,5 г карбоната калия K2CO3. После окончания выделения CO2 объем полученного раствора доводят водой до 136 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель силикагель SiO2 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 19,5% мас. MoO3, 5,0% мас. CoO и 7,6% мас. K2O (табл. 1).

Пример 9

Для приготовления пропиточного раствора 32,8 г додекамолибдокремниевой кислоты H4[SiMo12O40] растворяют в 80 см3 воды при добавлении 11,0 г гидрокарбоната кобальта CoCO3·nCo(OH)2·mH2O и 15,3 г винной кислоты C4H6O6. После окончания выделения CO2 в полученный раствор добавляют 15,9 г карбоната калия K2CO3. После окончания выделения CO2 объем полученного раствора доводят водой до 83 см3. pH пропиточного раствора равен 3.0-4.0.

Носитель - оксид алюминия, модифицированный SiO2 5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°C в течение 8 ч.

После прокаливания на воздухе в течение 2 ч при 550°C катализатор содержит 19,5% мас. MoO3, 5,1% мас. CoO и 8,9% мас. K2O (табл. 1).

Катализаторы испытывали в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора. Каталитические свойства определяли на лабораторной проточной установке с микро-реактором в процессе гидроочистки модельной смеси, состоящей из тиофена, н-гексена-1 и н-гептана. Содержание в сырье серы ~1000 ppm, н-гексена-1 35,6% мас. В реактор загружали катализатор в количестве 0.3000±0.0005 г (фракция 0,25-0,50 мм), разбавленный SiC до общего объема 1 см3. Условия процесса: температура 220°C, давление 1,5 МПа, кратность циркуляции H2/сырье 100 нл/л, ОСПС 5 ч-1.

Каждый час проводили отбор катализата для анализа его состава на газовом хроматографе Кристалл-5000. Разделение продуктов реакций осуществляли на кварцевой капиллярной колонке с привитой фазой OV-101.

Селективность катализаторов в отношении реакций обессеривания оценивался по селективному фактору, рассчитанному по формуле:

где xтиофен - конверсия тиофена, %

xгексен-1 - конверсия н-гексена-1, %.

Результаты каталитических испытаний представлены в табл. 2.

Таблица 2
Свойства катализаторов в гидроочистке сырья тиофен - н-гексен-1
№ катализатора Конверсия тиофена, % Конверсия н-гексена-1, % Селективный фактор
1 12.9 10.3 1.27
2 39.4 17.4 2.62
3 21.2 12.2 1.83
4 29.3 17.4 1.81
5 18.3 10.0 1.92
6 20.7 11.2 1.95
7 34.1 10.3 3.84
8 36.7 13.8 3.08
9 34.3 10.9 3.64

Катализаторы, полученные заявляемым способом, показывают более высокую каталитическую активность и селективность. Для образца 7 селективный фактор равен 3.84, что почти в 3 раза выше, чем у прототипа.

Катализаторы испытывали в процессе гидроочистки бензиновых фракций каталитического крекинга (табл. 3). В трубчатый реактор загружали 15 см3 катализатора, разбавленного SiC до общего объема 30 см3. Сульфидирование проводили смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 8 ч. Условия испытания: давление водорода 1,0-3,0 МПа, кратность циркуляции водорода 50-300 нл/л сырья, объемная скорость подачи сырья 5,0-10,0 ч-1, температура в реакторе 280-320°C.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали в течение суток над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Результаты испытаний катализаторов представлены в табл. 3.

Таблица 3
Характеристики процесса селективной гидроочистки бензиновых фракций каталитического крекинга в присутствии заявляемых катализаторов и прототипа
№ катализатора Характеристики сырья1 Условия процесса2 Содержание в стабильном гидрогенизате, % мас. Показатели процесса
НК, °C КК, °C Содержание, % мас. T, °C ОСПС, ч-1 Р, МПа H2/сырье, нл/л серы ОУ С.Ф. Δ ОЧ, п
серы ОУ
1 0,1024 5,7 1,71 -5,0
2 0,0168 6,4 8,24 -2.5
5 120 218 0,2018 8,7 320 5,0 3,0 300 0,0326 6,8 7,58 -2,2
6 0,0334 6,9 7,95 -1,5
7 0,0130 6,7 10,67 -2,0
110 220 0,0096 13,5 280 10,0 1,5 100 0,0020 13,5 - 0,0
7,5 0,0014 13,2 85,67 -0,1
5,0 0,0005 12,3 31,74 -0,3
9 120 218 0,2018 8,7 320 5,0 3,0 300 0,0150 7,0 12,16 -1,6
110 220 0,0096 13,5 280 10,0 1,5 150 0,0022 13,5 - 0,0
7,5 1,0 50 0,0031 13,5 - 0,0
1 - НК - начало кипения, КК - конец кипения, ОУ - олефиновые углеводороды.
2 - Т - температура, ОСПС - объемная скорость подачи сырья, P - давление.
3 - С.Ф. - селективный фактор, рассчитанный по формуле 1, Δ ОЧ - разница между октановым числом стабильного гидрогенизата и сырья.

Заявляемые катализаторы превосходят по активности и селективности прототип. Показатели процесса при гидроочистке бензина, полученного из неочищенного вакуумного газойля (с содержанием серы 0,2018% мас.) позволяют сделать вывод о высокой эффективности катализаторов и способов их приготовления. Процесс гидроочистки олефинсодержащего углеводородного сырья в присутствии заявляемых катализаторов обеспечивает получение бензина с ультранизким содержанием серы и сохранением значения его октанового числа на исходном уровне.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 51.
10.07.2015
№216.013.5e67

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с...
Тип: Изобретение
Номер охранного документа: 0002555708
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e88

Шихта для получения тарного стекла

Изобретение относится к составам шихт для получения окрашенных в массе тарных стекол. Технический результат заключается в расширении сырьевой базы и удешевлении производства стекла. Шихта содержит, мас.%: кварцевый песок 31,25-51,72; каолин 1,48-21,66; сульфатсодержащая зола 16,04-22,72;...
Тип: Изобретение
Номер охранного документа: 0002555741
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60c2

Способ испытания материалов на фреттинг-усталость

Изобретение относится к испытаниям материалов на фреттинг-усталость. Способ испытания материалов на фреттинг-усталость заключается в том, что испытуемый цилиндрический образец, в виде стержня переменного сечения с напрессованной на него втулкой контробразца, располагается в машине для...
Тип: Изобретение
Номер охранного документа: 0002556312
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.615f

Способ работы теплоэлектроцентрали с открытой теплофикационной системой

Изобретение относится к энергетике. Способ работы теплоэлектроцентрали с открытой теплофикационной системой, содержащей: котельные агрегаты, паровые турбины с промышленными отборами пара, конденсаторами и электрогенераторами, подогреватели сырой воды, химводоочистку для умягчения подпиточной...
Тип: Изобретение
Номер охранного документа: 0002556469
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62f6

Контактная система вакуумного выключателя

Изобретение касается контактной системы вакуумного выключателя, в межконтактном объеме которой используют жидкометаллическое рабочее тело. В геометрических центрах подвижного и неподвижного контактов выполнены глухие цилиндрические отверстия, а в отверстие подвижного контакта и на его...
Тип: Изобретение
Номер охранного документа: 0002556881
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.68de

Способ и устройство для непрерывного электро- и теплоснабжения загородных жилых домов

Изобретение относится к автономным системам электро- и теплоснабжения загородных жилых домов. Теплоснабжение загородных жилых домов производится от теплового аккумулятора, зарядку которого производят вихревым теплогенератором с питанием насоса от накопителей электроэнергии (аккумуляторов). От...
Тип: Изобретение
Номер охранного документа: 0002558399
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.68f1

Способ утилизации баллиститных ракетных топлив

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород. В способе утилизации баллиститных ракетных топлив путем переработки их в кумулятивные разрывные заряды закрепляют заряд топлива в...
Тип: Изобретение
Номер охранного документа: 0002558418
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.68f2

Устройство для измерения параметров срабатывания капсюля-детонатора с ударно-волновой трубкой

Изобретение относится к области измерения параметров срабатывания капсюлей-детонаторов с ударно-волновой трубкой в неэлектрических системах взрывного дела. Устройство для измерения параметров срабатывания капсюля-детонатора с ударно-волновой трубкой состоит из узла для подрыва...
Тип: Изобретение
Номер охранного документа: 0002558419
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b6d

Способ утилизации баллиститных ракетных топлив

Изобретение относится к технологии конверсионных производств и может быть использовано для изготовления кумулятивных зарядов для дробления негабаритов горных пород, пробития металлических преград. В способе утилизации баллиститных ракетных топлив путем переработки их в кумулятивные разрывные...
Тип: Изобретение
Номер охранного документа: 0002559059
Дата охранного документа: 10.08.2015
27.10.2015
№216.013.88fc

Система управления электромагнитным подвесом ротора

Изобретение относится к области электротехники и может быть использовано в роторных механизмах на электромагнитных опорах. Техническим результатом является повышение быстродействия и динамической точности электромагнитного подвеса ротора. В системе управления электромагнитным подвесом ротора...
Тип: Изобретение
Номер охранного документа: 0002566671
Дата охранного документа: 27.10.2015
Показаны записи 31-40 из 133.
10.02.2014
№216.012.9e93

Способ переработки нефтесодержащих шламов

Изобретение относится к способу переработки отходов - нефтесодержащих шламов. Способ переработки твердых нефтяных шламов осуществляют путем раздельного отбора из накопительного амбара верхнего слоя нефтешлама и донного слоя нефтешлама, от донного слоя нефтешлама отделяют замазученный грунт,...
Тип: Изобретение
Номер охранного документа: 0002506303
Дата охранного документа: 10.02.2014
27.04.2014
№216.012.be25

Способ приготовления хлеба (варианты)

Изобретение относится к пищевой промышленности. Способ приготовления хлеба включает стадии приготовления теста из пшеничной муки, дрожжей хлебопекарных, соли поваренной пищевой, воды питьевой, разделки, расстойки и выпечки тестовых заготовок, причем включают обогащающую добавку, в качестве...
Тип: Изобретение
Номер охранного документа: 0002514417
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.c178

Минеральный порошок для асфальтобетонной смеси

Изобретение относится к дорожному строительству, в частности к производству минерального порошка для асфальтобетонной смеси. Технический результат - повышение гидрофобности минерального порошка, снижение набухания порошка и повышение предела прочности асфальтобетона на его основе. Минеральный...
Тип: Изобретение
Номер охранного документа: 0002515277
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c23a

Способ получения битума из нефтесодержащих отходов

Изобретение относится к области нефтепереработки, в частности к способу получения битума путем окисления. Способ включает обработку исходного сырья с получением целевого продукта и последующим его компаундированием с получением дорожного битума. При этом сначала путем обработки нефтесодержащих...
Тип: Изобретение
Номер охранного документа: 0002515471
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c255

Способ получения 1-(адамантил-1)-пиридиний бромида

Настоящее изобретение относится к способу получения 1-(адамантил-1)-пиридиний бромида путем взаимодействия 1-бромадамантана с пиридином в мольном соотношении 1:1-2 в присутствии 1-10% мольных 3-гидроксипиридина при 90-120°C в течение 10-40 ч. Технический результат: разработан новый способ...
Тип: Изобретение
Номер охранного документа: 0002515498
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c257

Способ получения 5-метокси-4-азатрицикло[4.3.1.1 3,8]ундец-4-ена

Настоящее изобретение относится к способу получения 5-метокси-4-азатрицикло[4.3.1.1]ундец-4-ена путем взаимодействия 4-азатрицикло[4.3.1.1]ундекан-5-она с диметилсульфатом в мольном соотношении 1:1.0-1.5 при температуре 60-120°С в течение 3-9 ч без растворителя. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002515500
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c457

Способ сбора и обработки информации о поверхности образца

Изобретение относится к измерительной технике, в частности к средствам контроля рельефа и поверхностных свойств образцов с помощью склерометров, и может быть использовано для оценки изменения свойств поверхности вдоль пути сканирования. Для этого осуществляют сканирование контролируемой...
Тип: Изобретение
Номер охранного документа: 0002516022
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c9c9

Цифровой модулятор для управления синхронным электродвигателем

Изобретение относится к области импульсной техники и может быть использовано в силовых преобразователях систем управления синхронными электродвигателями, оснащенными датчиками положения ротора. Технический результат заключается в обеспечении возможности регулирования скорости синхронной машины...
Тип: Изобретение
Номер охранного документа: 0002517423
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d7a0

Шихта для получения силикатного стекла

Изобретение относится к составам шихт для получения стекол и может быть использовано для изготовления изделий промышленного и декоративно-художественного назначения, а также в производстве керамических изделий. Шихту для получения силикатного стекла получают путем смешения отходов производства...
Тип: Изобретение
Номер охранного документа: 0002520978
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d86a

Способ шлифования сферических торцов конических роликов

Изобретение относится к машиностроению и может быть использовано в подшипниковой промышленности для шлифования сферических торцов конических роликов. Способ шлифования включает установку конического ролика конической поверхностью во втулку и сообщение вращения коническому ролику вместе с...
Тип: Изобретение
Номер охранного документа: 0002521180
Дата охранного документа: 27.06.2014
+ добавить свой РИД