×
20.07.2015
216.013.62a6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования. Для обеспечения совместимости конструкционных сталей плакированного изделия способ включает подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σ для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σ. 2 ил., 4 табл., 3 пр.
Основные результаты: Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования.

Область техники: одной из особенностей энергетического машиностроения является совмещение разнородных конструкционных материалов, что позволяет для отдельных частей узла применять различные марки сталей, наиболее пригодные для тех температурных, коррозийных, прочностных и других условий, в которых работает данная часть узла энергетического оборудования. Стоит отметить и выполнение различного рода наплавок, позволяющих значительно повысить стойкость поверхности детали или улучшить их сопряжение.

В настоящее время установление термической совместимости конструкционных сталей энергетического оборудования осуществляют посредством оценки возможности свариваемости этих сталей между собой. При этом учитывают наличие концентраторов напряжения, которые снижают прочность и пластичность при высоких температурах. Чувствительность материала к концентрации напряжений выявляется при растяжении цилиндрических образцов со спиральным надрезом и оценивается на основе следующих коэффициентов:

где σд.п.н - длительная прочность надрезанного образца;

δн - пластичность надрезанного образца;

σд.п.г - длительная прочность гладкого образца;

δг - пластичность гладкого образца.

Значения Кσ находятся в пределах (0,5÷1), а Кδ может меняться в большем диапазоне от 0,8 до 0,04; особенно низкие значения Кδ у высокопрочных аустенитных сталей и сплавов на никелевой основе.

В производственной практике термическую совместимость конструкционных сталей устанавливают посредством возможности свариваемости, которую для углеродистых и низколегированных сталей оценивают по качественным показателям: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся стали. Свариваемость оценивается по полному эквиваленту углерода (С), %:

где (С)х - химический эквивалент углерода, %;

(С)р - размерный эквивалент углерода, которым учитывается влияние толщины стенки на закаливаемость материала (стали) вследствие изменения теплоотвода и скорости охлаждения при сварке;

S - толщина стенки, мм.

Как показывает практика, приведенные оценки даже при соблюдении всех технологических мер не всегда обеспечивают требуемые эксплуатационные свойства сварных соединений.

Свариваемость высокохромистых сталей мартенситного (мартенситно-ферритного) класса, аустенитных хромоникелиевых сталей представляет собой значительно более сложную техническую задачу. Установление термической совместимости разнородных материалов в этом случае усложняется в еще большей степени.

Факторами, учитываемыми при расчетах сварных соединений на прочность, являются:

1) при температуре ниже 250°C (для углеродистых сталей и стали 12Х1МФ) - временное сопротивление σв;

2) при температуре ниже 260-420°C (для углеродистых сталей) и ниже 550°C (для стали 12Х18Н10Т) - предел текучести σт;

3) при температуре выше 420°C (для углеродистых сталей), выше 470°C (для стали 12Х1МФ), выше 550°C (для сталей 12Х18Н10Т и 12Х18Н12Т) - предел длительной прочности σд.п.

Кроме этих факторов, могут быть учтены химический состав разнородных материалов, толщина стенки свариваемых труб, температура эксплуатации и другие.

Перечисленные подходы далеко не всегда обеспечивают необходимую работоспособность двух разнородных материалов при температуре эксплуатации и имеют следующие недостатки.

В частности, за критерий длительной прочности σд.п обычно принимают напряжение, при котором происходит разрушение в течение заданного срока службы. Следовательно, для деталей котло- и реакторостроения необходимо устанавливать напряжение разрушения за весь период эксплуатации, составляющий 100-300 тысяч часов и более. В этом заключается трудность применения критериев длительной прочности, так как приходится прибегать к ненадежным дальним экстраполяциям. Построение же точной математической зависимости между напряжением и временем не представляется возможным, так как разрушение металла является сложным и многофакторным процессом, определяется не только температурой и давлением, но и химическим и фазовым составом, структурой, технологией изготовления, условиями термической обработки и т.д., учесть которые в условиях изменяющихся высокоинтенсивных тепловых потоков и знакопеременных нагрузок - задача исключительной трудности.

В процессе эксплуатации теплоэнергетического оборудования при наличии градиентов температур, давлений среды, изгибающих и растягивающих нагрузок в стали происходит фазовая перекристаллизация, изменение атомно-дислокационной структуры, распад твердых растворов и перераспределение легирующих элементов с ростом концентрационной неоднородности, диспергирование и рост зерен, изменение и формирование новых фазовых и межзеренных границ и многие другие процессы, которые проявляются возникновением внутренних структурных напряжений I и II рода. Структурные напряжения II рода определяют внутризеренный характер разрушения. Наиболее опасны внутренние структурные напряжения I рода - зональные, доминантно влияющие на разрушение материала по границам зерен. Таким образом, внутренние микронапряжения отражают структурное состояние, определяют реальную прочность и могут сравниваться с механическими характеристиками прочности для данного металла.

Влияние микроструктурных характеристик в виде напряжений I и II рода на прочностные свойства и критерии длительной прочности (жаропрочности) обычно не учитывается. Применительно к критерию прочности σв - временному сопротивлению разрушению, который является мерой кратковременной прочности и макроскопической характеристикой, это означает, что σв определяется при полном разрушении, тогда как в образце, когда он еще не разрушен, уже существуют микроповреждения I и II рода.

Таким образом, недостатком известных способов является то, что они не содержат параметры микроструктуры, следовательно, приведенные выражения (1-3) не позволяют предположить, каким образом внутренние микронапряжения при работе металла в условиях ползучести при наличии механических и термических знакопеременных нагрузок повлияют на макроскопические свойства сопряженных разнородных элементов и их ресурсные характеристики. В этой связи недоучет внутренних напряжений ограничивает возможности создания высоконадежных теплообменных устройств, работающих в условиях высоких термомеханических нагрузок.

Задача заявляемого изобретения - установление возможности термического совмещения различных конструкционных сталей в плакированном изделии при изготовлении энергетического оборудования.

Поставленная задача достигается тем, что в заявленном способе подготавливают эталон из каждой стали, проводят их термоциклирование, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σв.

Остаточные напряжения первого рода (зональные) эталона, вызывающие коробление, удлинение, формоизменение, растрескивание с полной потерей прочности конструкционного материала, определяют по формуле:

где ai - параметр кристаллической решетки при температуре термоциклирования ti;

ai-1 - параметр кристаллической решетки для холодного состояния эталона предыдущего термоцикла;

ti - температура термоциклирования;

Е - модуль упругости.

Под термоциклированием подразумевают нагревание до определенной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в нагретом состоянии агор, охлаждение до комнатной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в охлажденном состоянии aхол, а затем повторение этой последовательности действий с повышением температуры в каждом цикле нагрева.

Для пояснения способа установления термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования приведены следующие данные экспериментов.

В таблице 1 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 12Х1МФ.

В таблице 2 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 12Х1МФ.

В таблице 3 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 08Х18Н10Т.

В таблице 4 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 08Х18Н10Т.

На фиг. 1 показана зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti.

На фиг. 2 показана зависимость остаточных напряжений первого рода эталона из стали 08Х18Н10Т от температуры термоциклирования ti.

Изобретение поясняется следующим примером.

Подготавливают эталон из стали 12Х1МФ, подвергают его термоциклированию (нагревают до температуры 225°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор; нагревают до температуры 323°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 420°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 517°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 590°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 635°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор), по результатам которого (таблица 1) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 2). Определяют зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti (фиг. 1).

Подготавливают эталон из стали 08Х18Н10Т, подвергают его термоциклированию (нагревают до температуры 100°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 200°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 300°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 400°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 500°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 600°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 700°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), по результатам которого (таблица 3) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 4). Определяют зависимость остаточных напряжений первого рода для эталона из стали 08Х18Н10Т от температуры термоциклирования ti, (фиг. 2).

Определяют предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии:

Пример 1. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 450°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m11) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m12) - .

Определяют предел прочности ав для каждой рассматриваемой стали при температуре 450°C:

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 450°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 450°C, возможно.

Пример 2. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 500°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m21) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m22) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 500°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. -М.: Металлургия, 1991. - 383 с, страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 500°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 500°C, возможно.

Пример 3. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 550°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m31) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m32) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 550°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с, страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 550°C больше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 550°C, невозможно.

Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 152.
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3223

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что выполняют излучение ультразвукового сигнала, прием ответного сигнала, измерение временного интервала между излученным и принятым сигналами и определение расстояния до...
Тип: Изобретение
Номер охранного документа: 0002544310
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3224

Устройство компенсации погрешности измерения ультразвукового скважинного глубиномера

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и...
Тип: Изобретение
Номер охранного документа: 0002544311
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3225

Устройство для определения характеристик материалов

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик...
Тип: Изобретение
Номер охранного документа: 0002544312
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3226

Способ определения оптимальной температуры пассивации трубных элементов теплоэнергетического оборудования и устройство для коррозионных испытаний

Использование: для определения оптимальной температуры пассивации трубных элементов теплоэнергетического оборудования. Сущность изобретения заключается в том, что подготавливают эталон, подвергают его термоциклированию, при проведении которого методом рентгеновской дифракции определяют...
Тип: Изобретение
Номер охранного документа: 0002544313
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3264

Состав антиоксидантной композиции для улучшения качества питьевой воды

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002544375
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.343a

Сильноточный наносекундный ускоритель электронных пучков

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном...
Тип: Изобретение
Номер охранного документа: 0002544845
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3455

Сверхпроводящий быстродействующий размыкатель

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002544872
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.384c

Способ диагностики апоптоза лимфоцитов

Изобретение относится к медицине и может быть использовано для диагностики апоптоза лимфоцитов. Для этого клетки выделяют, инкубируют 48 часов при температуре 37°С и с 5% содержанием СО, с добавлением индуктора апоптоза дексаметазона в концентрации 10 моль/мл. Количественно определяют...
Тип: Изобретение
Номер охранного документа: 0002545900
Дата охранного документа: 10.04.2015
Показаны записи 81-90 из 244.
10.02.2014
№216.012.9e5b

Способ получения циркониевой керамики

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида...
Тип: Изобретение
Номер охранного документа: 0002506247
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
+ добавить свой РИД