×
10.07.2015
216.013.6040

СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения нанопорошков на основе феррита висмута для создания магнитоэлектрических материалов - мультиферроиков и компонентов электронной техники, которые могут найти широкое применение в микроэлектронике, в частности спиновой электронике (спинтронике); в сенсорной и СВЧ-технике; в устройствах для записи, считывания и хранения информации и др. Задача предлагаемого изобретения - получение чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией в один этап - для изготовления материалов и компонентов электронной техники. Техническим результатом изобретения является то, что он позволяет повысить эффективность и снизить энергозатраты при изготовлении чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией, путем нагревания, с различными скоростями, содержащего глицин раствора нитратов соответствующих металлов разной насыщенности. Преимуществами предложенного способа являются: получение непосредственно однофазного феррита висмута; чистота и однородность; низкие температуры синтеза; экспрессность за счет получения продукта за один этап синтеза. 8 ил.
Основные результаты: Способ получения однофазного нанопорошка феррита висмута BiFeO, включающий получение рассчитанных количеств смесей нитрата висмута Bi(NO) с глицином и нитрата железа Fe(NO) с глицином, добавление в них воды и кислоты с получением растворов, смешивание полученных растворов, выпаривание, нагрев до температуры вспышки и синтез с получением порошка, отличающийся тем, что в качестве кислоты в смесь нитратов добавляют азотную кислоту, выпаривание проводят до плотности 1,14-1,16, а нагрев до температуры вспышки осуществляют со скоростью 10-30 град/мин.
Реферат Свернуть Развернуть

Изобретение относится к способу получения нанопорошков на основе феррита висмута для создания магнитоэлектрических материалов - мультиферроиков и компонентов электронной техники, которые могут найти широкое применение в микроэлектронике, в частности спиновой электронике (спинтронике); в сенсорной и СВЧ-технике; в устройствах для записи, считывания и хранения информации и др.

Известны способы [1-11] получения нанопорошков на основе феррита висмута. Основными недостатками этих способов, описанных в [1-9], являются высокие температуры синтеза, необходимость дополнительной обработки продуктов в ходе получения прекурсора и его вспышки, многофазность полученных порошков, наличие дефектов структуры нанокристаллов и необходимость дополнительных процедур для исключения этих недостатков после получения продукта в результате сжигания соответствующих прекурсоров. Из известных способов получения нанопорошков наиболее близкими по технической сущности являются материалы, описанные в [10-12].

В [12] приводится технология получения нанопорошков на основе сложных оксидов Y(BaxBe1-x)2Cu3O7-δ методом сжигания глицин нитратных прекурсоров соответствующих металлов. Метод получения нанопорошка сложных оксидов Y(BaxBe1-x)2Cu3O7-δ в [9] реализуется следующим способом: готовится водный раствор нитратов, содержащий эквимолярные количества соответствующих металлов. В полученный раствор добавляется глицин в количестве рассчитанной по окислительно-востановительной реакции для получения соответственного сложного оксида. Раствор выпаривается до получения сухого стекловидного состояния. Сжигание полученного продукта производится небольшими порциями, сбрасываемыми в круглодонную колбу, раскаленную до 500°C. Это обеспечивает полное его сжигание после вспыхивания и уменьшение потерь нанопорошка, выстреливаемого при вспыхивании.

В [10] приводится технология получения нанопорошков на основе феррита висмута, суть которой в том, что вводные растворы нитратов соответствующих металлов, которые получают добавлением азотной кислоты, в качестве окислителя, осаждают добавлением винной кислоты. Затем выпаривают. Высушенный осадок подвергают термической обработке при температуре 450-600°C в течение 2 часов. Затем подбираются среды и температуры отжига для получения однофазного поликристаллического порошка. Метод получения нанопорошка феррита висмута в [8] реализуется следующим способом: эквимолярные количества (0,01 М) Bi(NO3)3·5H2O и Fe(NO3)3-9H2O сначала растворяются в разбавленной азотной кислоте с образованием прозрачного раствора. К раствору добавляется винная кислота в молярном соотношении 1:1 по отношению к нитратам металлов. Раствор нагревают при 150-160°C при постоянном перемешивании, до получения пушистого зеленого осадка. Полученный осадок фильтруют, сушат и нагревают при различных температурах (450-600°C) в течение 2 часов. Аморфный нанопорошок выдерживают при температурах ~600°C, длительное время, до его перехода полностью в нанокристаллическое состояние. Это важно, поскольку только нанокристаллическая фаза BiFeO3, наряду с сегнетоэлектрическими, обладает ферромагнитными свойствами. Для достижения однофазного состава BiFeO3 выдержку при этой температуре осуществляют в среде кислорода.

Наиболее близким из выбранных аналогов является способ, описанный в [11], суть которого в том, что в вводные растворы нитратов соответствующих металлов добавляют глицин в качестве топлива и подкисляют щавелевой либо уксусной кислотой, при получении BiFeO3 из предварительно смешанных оксидов Bi2O3 и Fe2O3 в соотношении 1:1 добавляется азотная кислота, для получения нитратов соответствующих металлов и дополнительно подкисляют уксусной кислотой. Растворы (предварительно смешивают, если они представляют собой вводные растворы нитратов отдельных металлов) выпаривают нагревателем мощностью 800 ватт до получения сухого прекурсора, нагревание которого в течение 10-20 секунд приводит к вспышке и образованию порошка из наночастиц. Полученный порошок брикетируют и подвергают термообработке в микроволновой печи, а затем закалке, чтобы получить частицы чистого BiFeO3 одинакового размера.

Недостатком метода из [12] является то, что он не позволяет получить непосредственно однофазный феррит висмута.

Недостатками метода из [10] является то, что при осаждении раствора не может быть достигнута однородность из-за различной растворимости солей винной кислоты железа и висмута, необходимость выбора среды и температуры для термической обработки и многоэтапность этой обработки в целях получения однофазного порошка.

Недостатком метода из [11] является то, что растворы подкисляются щавелевой или уксусной кислотой, при этом для формирования необходимого нанокристаллического порошка BiFeO3 полученный продукт после вспышки высушенного прекурсора подвергается брикетированию и термообработке (нагреванию и закалке), т.е. недостаток способа в многоэтапности процедуры в целях получения однофазного нанокристаллического порошка необходимого размера. Кроме того, требуется дополнительно оптимизация таких параметров, как скорость и время нагревания, а также максимальная температура продукта, содержащего соединение BiFeO3. Несоблюдение соответствующих оптимальных параметров может привести к рекристаллизации нанокристаллического порошка BiFeO3, снижая положительный эффект, достигаемый в результате получения BiFeO3 в виде наночастиц, обладающих ферромагнетизмом в отличие от частиц дисперсностью выше 62 нм, обладающих антиферромагнетизмом.

Задача предлагаемого изобретения - получение чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией в один этап, без дополнительной обработки продуктов в ходе получения прекурсора и его вспышки, для изготовления материалов и компонентов электронной техники.

Техническим результатом изобретения является то, что он позволяет повысить эффективность и снизить энергозатраты при изготовлении чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией, путем нагревания, с различными скоростями, содержащего глицин раствора нитратов соответствующих металлов разной насыщенности.

Сущность предлагаемого изобретения заключается в том, что способ получения однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами включает: получение рассчитанных количеств смесей нитрата висмута Bi(NO3)3 с глицином и нитрата железа Fe(NO3)3 с глицином, добавление в них воды и кислоты с получением растворов, смешивание полученных растворов, выпаривание, нагрев до температуры вспышки и синтез с получением порошка, отличающийся тем, что в качестве кислоты в смесь нитратов добавляют азотную кислоту, выпаривание проводят до плотности 1,14-1,16, нагрев до температуры вспышки осуществляют со скоростью 10-30 град/мин.

Способ получения чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута осуществляется следующим образом:

1. Рассчитываются массы Bi(NO3)3 и Fe(NO3)3, необходимые для получения массы 30 граммов нанопорошка BiFeO3.

2. Рассчитывается масса глицина, необходимого для комплексообразования с Bi(NO3)3 и Fe(NO3)3, по реакции

Bi(NO3)3+3NH2-СН2-СООН→Bi(OOCCH2NH2)3+3HNO3

Fe(NO3)3+3NH2-СН2-СООН→Fe(OOCCH2NH2)3+3HNO3

3. В рассчитанную массу Bi(NO3)3 - 37,84 г добавляется 350 мл воды (выпадает белый осадок). В этот раствор добавляется глицин (42,10 г) до полного растворения осадка и концентрированная азотная кислота (25 мл).

4. В рассчитанную массу Fe(NO3)3 - 23,16 г добавляется 100 мл воды. В этот раствор добавляется рассчитанная масса глицина (21,53 г).

5. Растворы смешиваются, смесь выпаривается до плотности 1,4-1,6, а затем нагревается до температуры вспышки со скоростью 10-30 град/мин.

В результате многократных проб был получен положительный результат - однородный по составу и дисперсности нанопорошок соединения BiFeO3 при соблюдении следующих технологических параметров.

Пример 1. Образец 3.

Раствор выпаривается до плотности в пределах 1,14÷1,16. Полученный раствор нагревается со скоростью 10÷30 град/мин. Температура вспышки 150÷200°C; температура горения 500÷600°C;

На рис. 1 приведены дифрактограмма и фазовая диаграмма образца. Как видно из рис. 1, при получении нанопорошка по вышеуказанной технологии образуется одна фаза феррита висмута BiFeO3 - синий цвет.

На рис. 1 представлена дифрактограмма образца 3 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD и фазовая диаграмма с содержанием фаз Phase Bismuth Ferrate (III): Weight fraction/%: 100.0.

В результате исследования на дифрактометре PANalytical Empyrean series 2 установлено, что размеры частиц составляют в среднем ≥35 нм. На рис. 2 представлена морфология этого порошка, исследованного на сканирующем зондовом микроскопе LEO-1450 с EDX-анализатором INCA Energy, на котором видно, что нанопорошок представляет собой агломераты, состоящие из наночастиц.

Пример 2. Образец 4.

Раствор выпаривается до плотности в пределах 1,14÷1,16. Полученный раствор нагревается со скоростью 100÷200 град/мин. Температура вспышки 200÷300°C; Температура горения 700÷800°C.

Как видно из рисунка 3, при получении нанопорошка по вышеуказанной технологии получается многофазный образец, состоящий из фаз, выделенных разными цветами: Bi2O3-β - 20% синим цветом, Bi - 16% зеленым цветом, BiFeO3 - 16% серым цветом, Fe3O4 - 48% красным цветом. На рисунке 4 приведена морфология полученного нанопорошка.

На рис 3. представлена дифрактограмма образца 4 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD db и фазовая диаграмма с содержанием фаз.

Phase Bismuth Oxide - Beta:

Weight fraction/% 20.0 синий

Phase Bismuth:

Weight fraction/% 16.0 зеленый

Phase Bismuth Iron (III) Oxide:

Weight fraction/% 16.0 серый

Phase Iron Oxide (3/4):

Weight fraction/% 48.0 красный

Пример 3. Образец 1.

Раствор выпаривали до кристаллического состояния. Высокая гигроскопичность кристаллов не позволяла довести их до сухого состояния. Нагрев небольших количеств этого прекурсора со скоростями 100÷200 град/мин приводил к вспыхиванию при температурах 150÷200°C; температура горения 500÷600°C;

Образец получается многофазный, как показано на рисунке 5, состоящий из следующих фаз: BiFeO3 - 28% выделено синим цветом; Bi2O3-β - 31% зеленым цветом; Bi2O3 - 17% серым цветом, Fe3O4 - 24% красным цветом.

На рисунке 6 приведена морфология полученного нанопорошка (образец 1).

На рис. 5 представлена дифрактограмма образца 1 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD и фазовая диаграмма с содержанием фаз.

Phase Bismuth Ferrate (III):

Weight fraction/% 28.0 синий

Phase Bismuth Oxide - Beta:

Weight fraction/% 31.0 зеленый

Phase Bismuth Oxide:

Weight fraction/% 17.0 серый

Phase Magnetite:

Weight fraction/% 24.0 красный

Пример 4. Образец 2.

Раствор выпаривали до кристаллического состояния. Нагрев больших количеств этого прекурсора со скоростями 100÷200 град/мин приводил к вспыхиванию при температурах 200÷300°C; температура горения 500÷800°C по объему; при меньших скоростях нагрева вспыхивали отдельные части образца, процесс горения затягивался, а конечный продукт получался неоднородным.

На рис. 7 представлена дифрактограмма образца 2 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD db и фазовая диаграмма с содержанием фаз.

Phase Sillenite:

Weight fraction/% 28.0 синий

Phase Hematite:

Weight fraction/% 47.0 зеленый

Phase Bismuth Iron (III) Oxide:

Weight fraction/% 19.0 серый

Phase Bismuth Oxide:

Weight fraction/% 7.0 красный

Образец также получается многофазный, как показано на рисунке 7, состоящий из следующих фаз: Bi2O3 - 28% выделено синим цветом; Fe2O3 - 47% зеленым цветом; BiFeO3 - 19% серым цветом; Bi2O3 - 7% красным цветом.

На рисунке 8 приведена морфология полученного нанопорошка (образец 2).

Преимуществами предложенного способа являются:

1. Получение непосредственно однофазного феррита висмута в нанокристаллическом состоянии.

2. Чистота и однородность.

3. Низкие температуры синтеза.

4. Экспрессность за счет получения продукта за один этап синтеза без необходимости дополнительной обработки продуктов в ходе получения прекурсора и его вспышки.

Литература

1. Chen Z, Zhan G, Не Xin, Yang Hu, Wu Нао (2011) Low-temperature preparation of bismuth ferrite microcrystals by a sol-gel-hydrothermal method. Cryst Res Technol 46: 309-314.

2. Cheng ZX, Li AH, Wang XL, Dou SX, Ozawa K, Kimura H, Zhang SJ, Shrout TR (2008) Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J Appl Phys 103: 07E507.

3. Ferri EAV, Santos IA, Radovanovic E, Bonzanini R, Girotto EM (2008) Chemical characterization of BiFeO3 obtained by Pechini method. J.

4. Kim JK, Kim SSu, Kim WJ (2005) Sol-gel synthesis and properties of multiferroic BiFeO3. Mater Lett 59: 4006-4009.

5. Kumar MM, Palker VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramics. Appl Phys Lett 76: 2764.

6. Luo W, Wang D, Wang F, Liu T, Cai J, Zhang L, Liu Y (2009) Room-temperature simultaneously enhanced magnetization and electric.

7. Shetty S, Palkar VR, Pinto R (2002) Size effect study in mag-netoelectric BiFeO3 system. Pramana J Phys 58: 1027-1030.

8. CN 102627452 A (HARBIN INST TECHNOLOGY), 08.08.2012.

9. CN 102838356 A (SHANGHAI TITANOS INDASRY CO LTD), 26.12.2012.

10. Alina Manzoor, Hasanain S.K., Mumtaz A., Bertino M.F., Franzel L. Effects of size and oxygen annealing on the multiferroic behavior of bismuth ferrite nanoparticles // J Nanopart Res (2012) 14: 1310.

11. CN 101269842 A (INST ELECTRICAL ING CAS), 24.09.2008.

12. M.X. Рабаданов, Д.К. Палчаев, Ш.Ш. Хидиров, Мурлиева Ж.Х., и др. Способ получения материалов на основе Y(BaxBe1-x)2Cu3O7-δ. // Патент №2486161, Бюл. №18, 27.06.2013.

Способ получения однофазного нанопорошка феррита висмута BiFeO, включающий получение рассчитанных количеств смесей нитрата висмута Bi(NO) с глицином и нитрата железа Fe(NO) с глицином, добавление в них воды и кислоты с получением растворов, смешивание полученных растворов, выпаривание, нагрев до температуры вспышки и синтез с получением порошка, отличающийся тем, что в качестве кислоты в смесь нитратов добавляют азотную кислоту, выпаривание проводят до плотности 1,14-1,16, а нагрев до температуры вспышки осуществляют со скоростью 10-30 град/мин.
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 32.
27.04.2013
№216.012.3a0b

Очистка сточных вод от тяжелых металлов

Изобретение может быть использовано для очистки воды в фармацевтической и пищевой отраслях промышленности. Способ очистки сточных вод от тяжелых металлов включает пропускание воды в динамическом режиме через колонку со смесью двух модифицированных сорбентов в соотношении 2:1. Первый сорбент...
Тип: Изобретение
Номер охранного документа: 0002480420
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.4113

Способ получения эпитаксиальных пленок твердого раствора (sic)(aln)

Изобретение относится к технологии получения многокомпонентных полупроводниковых материалов. Эпитаксиальные пленки твердого раствора (SiC)(AlN), где компонента х больше нуля, но меньше единицы, получают путем осаждения твердого раствора на монокристаллическую подложку SiC-6H при температуре...
Тип: Изобретение
Номер охранного документа: 0002482229
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5058

Способ получения материалов на основе y(ваве)cuo

Изобретение относится к способу получения материалов на основе сложного оксида Y(BaBe)CuO с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения...
Тип: Изобретение
Номер охранного документа: 0002486161
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6960

Способ восстановления лесополосы после пожаров

Способ включает посев семян, плодов или сеянцев. Готовят смесь из нанопорошков древесного угля и почвы из пожарного рефугиума в соотношении 1:10. Доводят смесь до сметанообразующей суспензии, которой обрабатывают семена, плоды или сеянцы перед посадкой. Способ позволяет обеспечить 100%-ное...
Тип: Изобретение
Номер охранного документа: 0002492627
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7986

Способ получения метансульфокислоты

Изобретение относится к способу получения метансульфокислоты путем электролиза водного раствора диметилсульфоксида на фоне метансульфокислоты, отличающийся тем, что электролизу подвергают 0,1-0,15 М водный раствор диметилсульфона при плотностях анодного тока 0,12-0,20 А/см. Технический...
Тип: Изобретение
Номер охранного документа: 0002496772
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f6e

Определение димедрола

Изобретение относится к области аналитической химии, а именно к твердофазно-спектрофотометрическому определению фармацевтического препарата - димедрола. Способ включает использование в качестве цветореагента сульфоназо и фотометрирование, при этом проводят образование ионного ассоциата с...
Тип: Изобретение
Номер охранного документа: 0002498295
Дата охранного документа: 10.11.2013
10.02.2014
№216.012.9f5c

Гелиоустановка для химических реакций

Изобретение относится к гелиотехнике и может быть использовано для проведения химических реакций. Гелиоустановка для химических реакций включает патрубки, нагреватель. Установка содержит кубическую рабочую камеру с прозрачным окном, внутри которой расположено пористое тело, поддерживаемое с...
Тип: Изобретение
Номер охранного документа: 0002506504
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.d183

Устройство для термомассажа и способ его проведения

Группа изобретений относится к медицинской технике и может быть использована в физиотерапии, в том числе в урологии, гинекологии, проктологии, отоларингологии и др. Техническим результатом является расширение арсенала средств для массажа термоконтрастного действия и достижение изотропии...
Тип: Изобретение
Номер охранного документа: 0002519406
Дата охранного документа: 10.06.2014
27.07.2014
№216.012.e5c3

Способ получения магнетита

Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза. Процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор гидроксида натрия и подключают ток. Напряжение составляет...
Тип: Изобретение
Номер охранного документа: 0002524609
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e79e

Способ получения геля кремниевой кислоты

Изобретение может быть использовано в химической промышленности. Гель кремниевой кислоты получают подкислением раствора силиката щелочного металла добавлением природной сероводородной воды. Предложенное изобретение позволяет снизить энергозатраты. Полученный в ходе реакции продукт сульфид...
Тип: Изобретение
Номер охранного документа: 0002525087
Дата охранного документа: 10.08.2014
Показаны записи 1-10 из 34.
27.04.2013
№216.012.3a0b

Очистка сточных вод от тяжелых металлов

Изобретение может быть использовано для очистки воды в фармацевтической и пищевой отраслях промышленности. Способ очистки сточных вод от тяжелых металлов включает пропускание воды в динамическом режиме через колонку со смесью двух модифицированных сорбентов в соотношении 2:1. Первый сорбент...
Тип: Изобретение
Номер охранного документа: 0002480420
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.4113

Способ получения эпитаксиальных пленок твердого раствора (sic)(aln)

Изобретение относится к технологии получения многокомпонентных полупроводниковых материалов. Эпитаксиальные пленки твердого раствора (SiC)(AlN), где компонента х больше нуля, но меньше единицы, получают путем осаждения твердого раствора на монокристаллическую подложку SiC-6H при температуре...
Тип: Изобретение
Номер охранного документа: 0002482229
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5058

Способ получения материалов на основе y(ваве)cuo

Изобретение относится к способу получения материалов на основе сложного оксида Y(BaBe)CuO с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения...
Тип: Изобретение
Номер охранного документа: 0002486161
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6960

Способ восстановления лесополосы после пожаров

Способ включает посев семян, плодов или сеянцев. Готовят смесь из нанопорошков древесного угля и почвы из пожарного рефугиума в соотношении 1:10. Доводят смесь до сметанообразующей суспензии, которой обрабатывают семена, плоды или сеянцы перед посадкой. Способ позволяет обеспечить 100%-ное...
Тип: Изобретение
Номер охранного документа: 0002492627
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7986

Способ получения метансульфокислоты

Изобретение относится к способу получения метансульфокислоты путем электролиза водного раствора диметилсульфоксида на фоне метансульфокислоты, отличающийся тем, что электролизу подвергают 0,1-0,15 М водный раствор диметилсульфона при плотностях анодного тока 0,12-0,20 А/см. Технический...
Тип: Изобретение
Номер охранного документа: 0002496772
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f6e

Определение димедрола

Изобретение относится к области аналитической химии, а именно к твердофазно-спектрофотометрическому определению фармацевтического препарата - димедрола. Способ включает использование в качестве цветореагента сульфоназо и фотометрирование, при этом проводят образование ионного ассоциата с...
Тип: Изобретение
Номер охранного документа: 0002498295
Дата охранного документа: 10.11.2013
10.02.2014
№216.012.9f5c

Гелиоустановка для химических реакций

Изобретение относится к гелиотехнике и может быть использовано для проведения химических реакций. Гелиоустановка для химических реакций включает патрубки, нагреватель. Установка содержит кубическую рабочую камеру с прозрачным окном, внутри которой расположено пористое тело, поддерживаемое с...
Тип: Изобретение
Номер охранного документа: 0002506504
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.d183

Устройство для термомассажа и способ его проведения

Группа изобретений относится к медицинской технике и может быть использована в физиотерапии, в том числе в урологии, гинекологии, проктологии, отоларингологии и др. Техническим результатом является расширение арсенала средств для массажа термоконтрастного действия и достижение изотропии...
Тип: Изобретение
Номер охранного документа: 0002519406
Дата охранного документа: 10.06.2014
27.07.2014
№216.012.e5c3

Способ получения магнетита

Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза. Процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор гидроксида натрия и подключают ток. Напряжение составляет...
Тип: Изобретение
Номер охранного документа: 0002524609
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e79e

Способ получения геля кремниевой кислоты

Изобретение может быть использовано в химической промышленности. Гель кремниевой кислоты получают подкислением раствора силиката щелочного металла добавлением природной сероводородной воды. Предложенное изобретение позволяет снизить энергозатраты. Полученный в ходе реакции продукт сульфид...
Тип: Изобретение
Номер охранного документа: 0002525087
Дата охранного документа: 10.08.2014
+ добавить свой РИД