×
10.07.2015
216.013.5e84

Результат интеллектуальной деятельности: ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ПОЛУЧЕНИЯ ПРОПИТКОЙ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С УГЛЕГРАФИТОВЫМ КАРКАСОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок пантографов, токосъемников, а также в различных узлах и изделиях ракетно-космического назначения. Литейный сплав на основе алюминия для пропитки углеграфитового каркаса содержит, мас.%: кремний 11,0-13,0, никель 0,5-3,0, хром 0,5-2,0, свинец 0,1-1,5, ванадий 0,01-0,3, алюминий - остальное. Техническим результатом изобретения является повышение прочности сцепления между пропитывающим сплавом и армирующим каркасом. 5 пр., 1 табл.
Основные результаты: Литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом, содержащий кремний, никель, хром и свинец, отличающийся тем, что он содержит ванадий при следующем соотношении, мас.%:

Изобретение относится к области металлургии и получения композиционных материалов и отливок. Может быть использовано для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, в качестве вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеткок, вставок пантографов, токосъемников, а также в различных узлах и изделиях ракетно-космического назначения.

Известен матричный сплав на основе алюминия, применяемый для получения композиционных материалов (далее КМ) пропиткой и имеющий следующий химический состав (мас.%): бор 2,0-3,0; кремний 10,0-12,0; ванадий 1,0-1,5; титан 1,0-1,5; алюминий - остальное [Заявка №2008103929/02, кл. C22C 35/00, C22C 21/02, опубл. 2009 г., БИ №18]. Изобретение позволяет снизить в два раза расход лигатуры при легировании сплавов на основе алюминия. Недостатком сплава является слишком большой расход такой лигатуры в производстве сплавов на основе алюминия и составляет 18-31 г на 1 кг сплава.

Известен также литейный сплав на основе алюминия, применяемый для получения КМ, методом пропитки, который может быть использован в производстве поршней двигателей внутреннего сгорания. Сплав имеет следующий химический состав (мас.%): кремний 12,0-13,0; медь 2,5-3,5; магний 1,0-1,5; никель 1,0-1,5; марганец 0,30-0,75; титан 0,10-0,20; цинк 0,20-0,50; хром 0,10-0,20; алюминий - остальное [Патент России №2385358 С1, кл. C22C 21/04, опубл. 27.03.2010, БИ №9]. Недостатки сплава заключаются в его повышенной склонности к хрупкому разрушению и пониженной работоспособности в условиях трения.

Наиболее близким к предлагаемому изобретению является литейный сплав на основе алюминия, который может быть использован при изготовлении конструкционных материалов для машиностроения и электрической промышленности. Сплав имеет следующий химический состав (мас.%): кремний 11-13, медь 0,8-1,5, магний 0,8-1,3, никель 0,5-1,2, марганец 0,3-1,2, железо 0,3-0,8, хром 0,3-0,5, цинк 0,3-0,5, титан 0,22-0,35, свинец 0,02-0,21, бор 0,02-0,06, церий 0,02-0,05, азот 0,02-0,05, алюминий - остальное. [Патент России №2490351 С1, кл. C22C 21/04, опубл. 20.08.2013, БИ №23].

Недостатками известного литейного сплава на основе алюминия являются низкие характеристики коррозийной стойкости, а также сплав обладает пониженной жидкотекучестью.

Задачей данного изобретения является повышение прочности сцепления (связи) между пропитывающим сплавом и армирующим каркасом, увеличение проникающей способности литейного сплава.

Техническим результатом данного изобретения является повышение качества композиционного материала, пропитанного данным матричным сплавом.

Технический результат достигается в литейном сплаве на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом, содержащем кремний, никель, хром и свинец, отличающемся тем, что он содержит ванадий при следующем соотношении, мас.%:

Кремний 11,0-13,0
Никель 0,5-3,0
Хром 0,5-2,0
Свинец 0,1-1,5
Ванадий 0,01-0,3
Алюминий Остальное

При изготовлении КМ любым способом необходимо выполнить два условия: создать физический контакт компонентов по всей поверхности раздела и осуществить степень физико-химического взаимодействия компонентов, обуславливающую требуемый уровень монолитизации КМ (прочность связи компонентов) при неизменных свойствах пропитывающего состава и углеграфитового каркаса.

Введение в сплав кремния менее 11,0 мас.% приводит к снижению температуры ликвидуса и,, соответственно, к уменьшению интервала кристаллизации. Наличие кремния уменьшает магнитную проницаемость и электросопротивление, понижает коэрцитивную силу

Введение в сплав более 13,0 мас.% приводит к уменьшению коэффициента линейного расширения, к повышению термо- и износостойкости, но при этом ухудшаются его литейные качества (ухудшается жидкотекучесть на 30%, а также герметичность сплава) и растет стоимость производства.

Введение в состав сплава менее 0,5 мас.% никеля приводит к снижению жаропрочности сплава и проникающей способности, что недостаточно для повышения прочности сцепления между матричным сплавом и армирующим каркасом.

Введение в состав сплава более 3,0 мас.% никеля приводит к стабильной работе в условиях высоких температур и любой, даже агрессивной среде, увеличение коррозии, но недостатком является легирование дорогими и дефицитными элементами.

Введение в состав сплава хрома в количестве менее 0,5 мас.% приводит к уменьшению износостойкости, твердости и стойкости к коррозии композиционного сплава.

Введение в состав сплава хрома в количестве более 2,0 мас.% приводит к стойкости к окислению и коррозии, но здесь вступает в силу фактор, который можно назвать углеродным ограничением. Способность углерода связывать большие количества хрома приводит к обеднению стали этим элементом.

Введение в состав сплава свинца в количестве менее 0,1 мас.% приводит к уменьшению коррозионной стойкости и электропроводности, а также снижает химическую стойкость сплава.

Введение в состав сплава свинца в количестве более 1,5 мас.% приводит к увеличению пластичности.

Введение в состав сплава ванадия в количестве менее 0,01 мас.% приводит к снижению его проникающей способности и недостаточно для повышения прочности сцепления между сплавом и каркасом

Сплав отличается тем, что дополнительно содержит ванадий для увеличения проникающей способности и повышения прочности сцепления между сплавом и каркасом.

Введение в состав сплава ванадия в количестве более 0,3 мас.% нецелесообразно ввиду отсутствия дальнейшего увеличения проникающей способности сплава, а также из-за сложности легирования дорогим и дефицитным элементом.

Введение в состав сплава алюминия в указанном диапазоне концентраций приводит к существенному повышению прочности матричного сплава вследствие увеличения его коррозионной стойкости за счет образования окисной пленки, а также высокой стойкости к окислению.

Предлагаемый сплав обеспечивает более высокую прочность КМ и стойкость к коррозии, чем известные сплавы.

Результаты исследований приведены в таблице.

Таблица
Контролируемый материал Состав, мас.% Результаты исследований
Кремний Никель Хром Свинец Ванадий Алюминий Матричного сплава КМ
Поверхностное натяжение, Н/м·10-3 Жидкотекучесть, мм Температура пропитки, °C Твердость, НВ Удельная электрическая проводимость, МСм/м Плотность, кг/м3 Прочность на сжатие, МПа
Сплав предлагаемого состава 10,5 0,4 0,4 0,45 0,005 остальное 250 300 800 105 32,5 1,90·103 90
11,0 0,5 0,5 0,5 0,01 245 315 800 130 33,5 1,95·103 105
11,5 0,95 0,8 0,55 0,1 220 480 800 165 35 2,00·103 140
12,0 1,25 1,0 0,6 0,15 200 560 800 180 37 2,05·103 160
12,5 1,75 1,25 1,0 0,2 180 600 800 220 38 2,10·103 210
13,0 3,0 2,0 0,8 0,3 150 750 800 250 39 2,15·103 220
13,5 3,5 2,5 0,85 0,35 165 680 800 260 40 2,20·103 225
12,0 1,75 1,25 0,8 0,2 205 540 800 200 36 2,15·103 170
12,5 1,75 2,0 0,85 0,2 180 595 800 240 35 2,10·103 210
Сплав-прототип 11,0-13,0 0,5-1,2 0,3-0,5 0,02-0,21 остальное 200 700 860-880 250 35 2,30·103 200

Примеры конкретного изготовления

ПРИМЕР 1. Сплав с содержанием ингредиентов (мас.%: кремний 10,5; никель 0,4; хром 0,4; свинец 0,45; ванадий 0,005; Al - остальное).

(см. таблицу).

На этапе приготовления сплава расплав алюминия перегревается до 950°C на зеркало расплава в тигле в течение 60-120 с подается аргон. Затем добавляется при непрерывном перемешивании требуемое количество кремния, никеля, хрома, и железа. Все тщательно перемешивается до выравнивания концентрации.

Изготовление КМ производилось пропиткой каркаса из углеграфита марки АГ-1500 матричным сплавом при давлении 15 МПа, температуре 600°C и выдержкой при давлении 20-25 мин.

В качестве технологических характеристик сплава исследовались его плотность, твердость, прочность на сжатие, поверхностное натяжение, жидкотекучесть по отношению к углеграфитовому каркасу.

В качестве технологических характеристик КМ исследовались прочность на сжатие и плотность.

Прочность сплава и КМ на сжатие определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм при настройке разрывной машины на нагрузку 10000 Н.

Проникающая способность сплава по отношению к углеграфитовому каркасу определялась по глубине затекания сплава в отверстия диаметром 1,0 мм, выполненные на дне углеграфитового стакана. Для этого в стакан с конусным отверстием вставляли углеграфитовый стакан меньшего диаметра с выполненным в нем отверстием. Таким образом, капли расплава, проникающего через отверстия, собирались на дне углеграфитового стакана. Капли взвешивали и рассчитывали объем металла, протекший через отверстия. Затем рассчитывали глубину затекания сплава в отверстия. Для уточнения результатов на проникающую способность сплавы исследовали по оригинальной методике. На дне углеграфитового стакана выполнялось три отверстия диаметром 1,0 мм. Проникающая способность определялась как среднее значение глубины затекания из трех опытов.

Для определения поверхностного натяжения сплавов изготавливались углеграфитовые подложки, на которые помещались навески сплава. Подложки с навесками помещались в алундовую трубку для нагрева в трубчатой печи. После по контуру капли рассчитывали поверхностное натяжение методом Дарси.

Плотность КМ определялась как процент заполнения открытых пор. Объем открытых пор определялся на образцах, предварительно пропитанных водой, с последующим определением веса и объема заполнившей образец воды.

Твердость матричного сплава определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм на прессе Бринелля.

Матричный сплав и КМ на его основе в условиях испытания показали: поверхностное натяжение - 250 Н/м·10-3, температуру пропитки - 800°C, твердость по Бринеллю - 105, жидкотекучесть - 300 мм, плотность - 1,9·103%, прочность на сжатие - 90 МПа.

ПРИМЕР 2. Сплав с содержанием ингредиентов (мас.%: кремний 11,0; никель 0,5; хром 0,5; свинец 0,5; ванадий 0,01; Al - остальное).

Пример сплава с условиями его испытания аналогичен примеру 1.

Матричный сплав и КМ на его основе в условиях испытания показали: поверхностное натяжение - 245 Н/м·10-3, температуру пропитки - 800°C, твердость по Бринеллю - 130, жидкотекучесть - 315 мм, плотность - 1,95·103%, прочность на сжатие - 105 МПа.

ПРИМЕР 3. Сплав с содержанием ингредиентов (мас.%: кремний 11,5; никель 0,95; хром 0,8; свинец 0,55; ванадии 0,1; Al - остальное).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Матричный сплав и КМ на его основе в условиях испытания показали: поверхностное натяжение - 220 Н/м·10-3, Температуру пропитки - 800°C, твердость по Бринеллю - 165, жидкотекучесть - 480 мм, плотность - 2,00·103%, прочность на сжатие - 140 МПа.

ПРИМЕР 4. Сплав с содержанием ингредиентов (мас.%: кремний 12,0; никель 1,25; хром 1,0; свинец 0,6; ванадий 0,15; Al - остальное).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Матричный сплав и КМ на его основе в условиях испытания показали: поверхностное натяжение - 200 Н/м·10-3, температуру пропитки - 800°C, твердость по Бринеллю - 180, жидкотекучесть - 560 мм, плотность - 2,05·103%, прочность на сжатие - 160 МПа.

ПРИМЕР 5. Сплав с содержание ингредиентов (мас.%: кремний 12,5; никель 1,75; хром 1,25; свинец 0,65; ванадий 0,2; Al - остальное).

Приготовление сплава и условия его испытаний аналогичны примеру 1.

Матричный сплав и КМ на его основе в условиях испытания показали: поверхностное натяжение - 180 Н/м·10-3, температуру пропитки - 800°C, твердость по Бринеллю - 220, жидкотекучесть - 600 мм, плотность - 2,10·103%, прочность на сжатие - 210 МПа.

Пример на варьирование составом сплава, обосновывающие влияние содержание никеля, хрома и кремния на технологические характеристики сплава и КМ приведены в таблице 1.

Таким образом, заявленный литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом благодаря повышенной прочности сцепления между сплавом и армирующим каркасом и увеличенной проникающей способностью, позволяет получить композиционные материалы более высокого качества.

Литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом, содержащий кремний, никель, хром и свинец, отличающийся тем, что он содержит ванадий при следующем соотношении, мас.%:
Источник поступления информации: Роспатент

Показаны записи 131-140 из 218.
20.08.2015
№216.013.7351

Способ модификации поверхности нити полиэтилентерефталата

Изобретение относится к области химии полимеров, а точнее к новому способу модификации нити полиэтилентерефталата (ПЭТФ) функциональными добавками, и может быть использовано в текстильном отделочном производстве, в самолето-, автомобилестроении и резиновой промышленности. Способ модификации...
Тип: Изобретение
Номер охранного документа: 0002561091
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7488

Способ изготовления двухслойных листовых металлополимерных материалов

Изобретение относится к технологии получения композиционных материалов с помощью энергии взрывчатых веществ для изготовления слоистых металлополимерных материалов с антикоррозионными, антифрикционными и антиобледенительными покрытиями и касается способа изготовления листовых металлополимерных...
Тип: Изобретение
Номер охранного документа: 0002561407
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7ac3

Способ приготовления резиновой смеси на основе этиленпропилендиенового каучука

Изобретение относится к способу приготовления резиновой смеси на основе этиленпропилендиенового каучука, изделия из которой могут использоваться в шинной и резинотехнической промышленности. Способ получения резиновой смеси на основе этиленпропилендиенового каучука включает введение в каучук...
Тип: Изобретение
Номер охранного документа: 0002563016
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac4

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой могут быть использованы в качестве уплотнителей в строительстве, покрытий в шинной и резинотехнической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002563017
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac5

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой характеризуются улучшенными деформационно-прочностными свойствами и могут быть использованы в качестве уплотнителей в...
Тип: Изобретение
Номер охранного документа: 0002563018
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7acf

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука содержит вулканизующие агенты, ускоритель вулканизации - производное бензотиазола,...
Тип: Изобретение
Номер охранного документа: 0002563036
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3c

Способ механической обработки глубокого отверстия в трубной заготовке

Изобретение относится к машиностроению и может быть использовано при механической обработке глубоких отверстий в трубных заготовках. Для осуществления способа используют борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли, выполненной с режущими и дорнующими...
Тип: Изобретение
Номер охранного документа: 0002563401
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c42

Способ получения композиционных изделий с внутренними полостями сваркой взрывом

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования и т.п. Составляют трехслойный пакет с размещением между пластинами из титана медной...
Тип: Изобретение
Номер охранного документа: 0002563407
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.81ce

Установка для испытания материалов на абразивное изнашивание

Изобретение относится к испытательной технике, в частности к устройствам для испытания металлов и сплавов, а также композиционных материалов и покрытий на стойкость к абразивному изнашиванию при нормальной и повышенных температурах. Установка содержит основание, на котором установлены привод...
Тип: Изобретение
Номер охранного документа: 0002564827
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82b0

Способ получения амидов карбоновых кислот

Изобретение относится к способу получения производных карбоновых кислот, которые находят применение в качестве полупродуктов в синтезе аминов, нитрилов и гетероциклических соединений, в качестве растворителей. Способ получения амидов карбоновых кислот заключается во взаимодействии карбоновой...
Тип: Изобретение
Номер охранного документа: 0002565059
Дата охранного документа: 20.10.2015
Показаны записи 131-140 из 347.
10.11.2014
№216.013.0366

Способ получения 1-(1-адамантил)-3,4-динитро-5(n-нитропиразолил)-1h-пиразолов

Изобретение относится к химии производных адамантана, а именно к новому способу получения 1-(1-адамантил)-3,4-динитро-5-(N-нитропиразолил)-1H-пиразолов нуклеофильным замещением с нитропиразолами, которые могут являться исходными соединениями для синтеза терапевтически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002532268
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04c1

Состав для пропитки абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении и эксплуатации абразивных инструментов. Состав для пропитки абразивного инструмента содержит в качестве органического вещества газообразователь - гексахлорпараксилол (1,4-бис-трихлорметилбензол), а в...
Тип: Изобретение
Номер охранного документа: 0002532615
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07dd

Трансмисионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему диалкилдитиофосфат цинка, полиметакрилат, кремнийорганическую присадку, серусодержащую присадку - продукт взаимодействия фракции α-олефинов с серой при нагревании в присутствии катализатора, нефтяное масло, при этом...
Тип: Изобретение
Номер охранного документа: 0002533414
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07de

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533415
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07df

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло - до 100. Серусодержащая присадка представляет собой продукт взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002533416
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e0

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, мас.%: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100. Серусодержащая присадка представляет собой продукт, полученный в...
Тип: Изобретение
Номер охранного документа: 0002533417
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e3

Способ совместного получения 1,2-эпоксидодекана и 1,2-додекандиола

Изобретение относится к способу эпоксидирования малоактивных длинноцепочных олефинов, при котором получаются эпоксиды и диолы. Додекандиол обеспечивает эластичность полиэфирных смол (покрытий, высококачественных полиуретановых покрытий), его используют в качестве полупродукта в синтезе...
Тип: Изобретение
Номер охранного документа: 0002533420
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07e5

Трансмиссионное масло

Настоящее изобретение относится к трансмиссионному маслу, содержащему, % масс.: серусодержащая присадка - 3,8; диалкилдитиофосфат цинка - 0,5; полиметакрилат - 1,5; кремнийорганическая присадка - 0,003; нефтяное масло до 100, при этом серусодержащая присадка представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002533422
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.083b

Способ получения композиционного материала медь-титан

Изобретение может быть использовано при изготовлении сваркой взрывом деталей термического, химического оборудования, теплорегуляторов. Составляют трехслойный пакет с симметричным расположением титановой пластины относительно медных с заданным соотношением толщин слоев. Сваривают пакет взрывом и...
Тип: Изобретение
Номер охранного документа: 0002533508
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0857

Тензорезисторный датчик силы

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри...
Тип: Изобретение
Номер охранного документа: 0002533536
Дата охранного документа: 20.11.2014
+ добавить свой РИД