×
27.06.2015
216.013.59ae

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА

Вид РИД

Изобретение

№ охранного документа
0002554499
Дата охранного документа
27.06.2015
Аннотация: Изобретение относится к области медицины и может быть применено для определения катехоламинов их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки. Способ осуществляют путем изменения принципиальной схемы формирования и измерения аналитического сигнала, регистрируемого в чувствительном слое биосенсора, - переходом к твердофазной флуоресценции. Действие биосенсора основано на реакции ферментативной дериватизации катехоламинов и их метаболитов с органическими аминами (o-фенилендиамин, этилендиамин) с образованием производных хиноксалина, флуоресцирующих в области 450-550 нм. При этом компоненты индикаторной реакции иммобилизованы в чувствительном слое на поверхности биосенсора, в результате флуоресцентный сигнал формируется и регистрируется непосредственно на твердой поверхности в режиме отражения. Наибольшую интенсивность флуоресцентного сигнала получают при использовании в качестве дериватизирующего агента o-фенилендиамина и проведении процесса при концентрации пероксидазы хрена - 10-25 нМ; концентрации пероксида водорода - 250-500 мкМ; концентрации o-фенилендиамина - 50-100 мкМ; концентрации катехоламинов и метаболитов - 5-2000 нМ. В качестве буферного раствора берут 5 мМ фосфатный буферный раствор pH 9.5-10.0. Чувствительный слой биосенсора представляет собой двухслойную пленку {хитозан - o-фенилендиамин/хитозан - пероксидаза}, нанесенную ровным слоем на поверхность стеклянной пластинки (14×40 мм). Изобретение обеспечивает простое и чувствительное определение катехоламинов и их метаболитов в объектах, анализ которых с использованием оптических методов детектирования по инструментальным причинам был ранее затруднен или невозможен вследствие мешающего влияния матрицы реального объекта, а также недостаточной чувствительности и воспроизводимости биосенсоров. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области медицины и может быть применено для определения катехоламинов и их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки.

Определение катехоламинов (КА) (допамин (ДА), адреналин (АД)) и их метаболитов (гомованилиновая и ванилилминдальная кислоты (ГВК и ВМК соответственно)) в биологических жидкостях и тканях человека является актуальной задачей современного химического анализа. Значимая проблема при определении перечисленных соединений в реальных биообъектах заключается в необходимости проведения дополнительной пробоподготовки анализируемого образца (использование токсичных или агрессивных органических растворителей, фильтрование, разделение), что существенно увеличивает погрешность результатов измерений и усложняет процедуру анализа. Перспективный подход к решению перечисленных проблем заключается в создании твердофазных оптических сенсоров, основанных на формировании и измерении аналитического сигнала не в растворе, а непосредственно на поверхности - в чувствительном слое сенсора, содержащем распознающие элементы (компоненты индикаторной системы, в том числе ферменты). Согласно исследованиям в областях, смежных биохимическому анализу, катехоламины и их метаболиты необходимо определять на наномолярном уровне и ниже. По этой причине наибольший интерес представляет разработка твердофазных оптических сенсоров с высокочувствительным детектированием отклика чувствительного слоя методом флуориметрии.

Известен способ определения адреналина с помощью оптоволоконного флуоресцентного биосенсора на основе фермента - лакказы, иммобилизованной в матрице {тетрааминофталоцианин меди - Fe3O4} (Huang J., Fang H., Liu С., Gu E., Jiang D. A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Anal. Lett. 2008. V.41. №8. P.1430-1442). Сенсор представляет собой ячейку, в которую помещена матрица, содержащая иммобилизованную лакказу, а также отделенные от нее тефлоновой мембраной частицы додецилсульфата трис(4,7-дифенил-1,10-фенантролин) рутения (II). Через прозрачное окошко ячейка контактирует с оптическим волокном. Действие сенсора основано на реакции окисления фенола кислородом в присутствии лакказы до o-хинона, приводящей к потреблению кислорода в системе. Аналитическим сигналом служит уменьшение интенсивности флуоресценции комплекса рутения в присутствии кислорода. Аналитический сигнал регистрируют в режиме отражения непосредственно в растворе (λех=450 нм, λem=600 нм). Однако измерение аналитического сигнала непосредственно в растворе не позволяет анализировать непрозрачные и мутные среды без их дополнительной пробоподготовки (растворение в токсичных органических растворителях, экстракция, фильтрование).

Известен принятый за прототип способ определения фенола, простейших изомерных o- и n-дифенольных соединений и флавоноидов с использованием твердофазных спектрофотометрических биосенсоров на основе оптически прозрачных пленок {хитозан-пероксидаза}, закрепленных на поверхности стеклянных пластинок (I.A. Veselova, L.I. Malinina, P.V. Rodionov, T.N. Shekhovtsova. Properties and analytical application of self-assembled complex {peroxidase-chitosan}. Talanta 102 (2012) 101-109). Действие биосенсора основано на ферментативном окислении фенольного соединения (до соответствующего o- или n-хинона) и последующем взаимодействии продукта окисления с хитозаном с образованием аддукта Михаэля, характеризующегося максимумом поглощения в области 345-355 нм. Формирование чувствительного слоя биосенсора осуществляют равномерным нанесением смеси {хитозан-пероксидаза} на поверхность горизонтально расположенной стеклянной пластинки и ее последующем высушивании на воздухе при комнатной температуре. Для проведения индикаторной реакции биосенсор выдерживают необходимое время в реакционной системе. Для измерения аналитического сигнала биосенсор извлекают из раствора, высушивают на воздухе при комнатной температуре и далее закрепляют на фронтальной поверхности кюветного отделения спектрофотометра. Аналитический сигнал регистрируют в режиме поглощения относительно чистой стеклянной пластинки. Окисление пероксидом водорода (H2O2, 1 мМ) проводят в 5 мМ фосфатном буферном растворе pH 6.5 в присутсвии пероксидазы из корней хрена (10 нМ) при комнатной температуре в течение 24 ч. Однако низкая технологичность указанного процесса обусловливается длительностью времени проведения анализа, кроме того, описанный спектрофотометрический биосенсор позволяет определять фенольные соединения на уровне не ниже микромолярного, а также не позволяет определять катехоламины и их метаболиты.

Предлагаемое изобретение решает задачу простого и чувствительного определения катехоламинов и их метаболитов в объектах, анализ которых с использованием оптических методов детектирования по инструментальным причинам был ранее затруднен или невозможен вследствие мешающего влияния матрицы реального объекта, а также недостаточной чувствительности и воспроизводимости биосенсоров.

Поставленная задача решается изменением принципиальной схемы формирования и измерения аналитического сигнала - переходом к твердофазной флуоресценции. Новизна при этом заключается в том, что компоненты индикаторной реакции иммобилизованы в чувствительном слое на поверхности биосенсора, в результате флуоресцентный сигнал формируется и регистрируется непосредственно на твердой поверхности в режиме отражения. Действие предложенного авторами биосенсора основано на реакции ферментативной дериватизации катехоламинов и их метаболитов с органическими аминами (o-фенилендиамином, этилендиамином) с образованием производных хиноксалина, флуоресцирующих в области 450-550 нм.

Наибольшую интенсивность флуоресцентного сигнала получают при использовании в качестве дериватизирующего агента o-фенилендиамина и проведении процесса при концентрации пероксидазы хрена - 10-25 нМ; концентрации пероксида водорода - 250-500 мкМ; концентрации o-фенилендиамина - 50-100 мкМ; концентрации катехоламинов и метаболитов - 5-2000 нМ. В качестве буферного раствора берут 5 мМ фосфатный буферный раствор pH 9.5-10.0. Чувствительный слой биосенсора представляет собой двухслойную пленку {хитозан - o-фенилендиамин/хитозан - пероксидаза}, нанесенную ровным слоем на поверхность стеклянной пластинки (14×40 мм). Объем смеси {хитозан - o-фенилендиамин} - 100 мкл, объем смеси {хитозан - пероксидаза} - 150 мкл, объемная доля хитозана в пленке 95%. Биосенсор устанавливают в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка 14×40 мм) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа).

Нами впервые был предложен подход, заключающийся в иммобилизации дериватизирующих агентов (o-фенилендиамина, этилендиамина) в хитозановой пленке на поверхности стекла и регистрации флуоресцентного сигнала непосредственно на твердой поверхности в чувствительном слое сенсора, что позволяет проводить анализ в непрозрачных и мутных средах.

Технический результат предлагаемого изобретения при этом состоит в улучшении технологичности процесса из-за исключения необходимости проведения дополнительной пробоподготовки анализируемого образца (кроме разбавления); чувствительность по сравнению с аналогом и прототипом возрастает до 3-70 нМ; время анализа сокращается до 30 с.

Анализ известных технических решений позволяет сделать вывод о том, что предлагаемое изобретение не известно из уровня техники, что свидетельствует о его соответствии критерию "новизна".

Сущность настоящего изобретения для специалистов не следует явным образом из уровня техники, что позволяет сделать вывод о его соответствии критерию "изобретательский уровень".

Возможность проведения способа на традиционном оборудовании с достижением поставленной задачи свидетельствует о соответствии изобретения критерию "промышленная применимость".

На фиг.1 представлена схема формирования чувствительного слоя биосенсора.

На фиг.2 представлена схема проведения индикаторной реакции.

На фиг.3 представлена схема измерения аналитического сигнала с использованием оптического биосенсора.

На фиг.4 представлены спектры флуоресценции чувствительного слоя биосенсора в отсутствие (1) и в присутствии АД (2) (сАД - 0.5 мкМ; время реакции 30 с).

Приведенные примеры подтверждают, но не ограничивают заявляемое изобретение.

Пример 1. Способ получения в чувствительном слое биосенсора 2,3-бензо-7-метиламин-хиноксалина, флуоресцирующего производного катехоламинов, на примере ферментативной дериватизации ДА с o-фенилендиамином

В качестве производного катехоламинов был взят допамин (ДА). Реакцию дериватизации ДА с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.5), раствор ДА (0.2-2.0 мкМ в системе) и 0.100 мл 25 мМ раствора Н2О2 (0.5 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (25 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λех=440-450 нм, λem=520 нм). Предел обнаружения - 70 нМ.

Пример 2. Способ получения в чувствительном слое биосенсора 2,3-бензо-7-гидроксиметиламин-хиноксалина, флуоресцирующего производного катехоламинов, на примере ферментативной дериватизации АД с o-фенилендиамином

В качестве производного катехоламинов был взят адреналин (АД). Реакцию дериватизации АД с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.75), раствор АД (0.1-1.0 мкМ в системе) и 0.070 мл 25 мМ раствора H2O2 (0.35 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (25 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λex=440-450 нм, λem=540 нм). Предел обнаружения - 50 нМ.

Пример 3. Способ получения в чувствительном слое биосенсора 2,3-бензо-хиноксалин-7-уксусной кислоты, флуоресцирующего производного метаболитов катехоламинов, на примере ферментативной дериватизации ГВК с o-фенилендиамином

В качестве производного метаболитов катехоламинов была взята гомованилиновая кислота (ГВК). Реакцию дериватизации ГВК с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 10.0), раствор ГВК (10-100 нМ в системе) и 0.050 мл 25 мМ раствора H2O2 (0.25 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (10 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λех=440-450 нм, λem=540 нм). Предел обнаружения - 5 нМ.

Пример 4. Способ получения в чувствительном слое биосенсора 2,3-бензо-хиноксалин-7-гидроксиуксусной кислоты, флуоресцирующего производного метаболитов катехоламинов, на примере ферментативной дериватизации ВМК с o-фенилендиамином

В качестве производного метаболитов катехоламинов была взята ванилилминдальная кислота (ВМК). Реакцию дериватизации ВМК с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.5), раствор ВМК (5-75 нМ в системе) и 0.070 мл 25 мМ раствора H2O2 (0.35 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (10 нМ в системе) и o-фенилендиамин (50 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λex=440-450 нм, λem=530 нм). Предел обнаружения - 3 нМ.

Как видно из приведенных примеров, предлагаемое изобретение решает задачу получения флуоресцирующих производных катехоламинов и их метаболитов непосредственно в чувствительном слое твердофазного оптического биосенсора.


СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
27.08.2014
№216.012.ef2f

Способ биокаталитической конверсии дибензотиофена

Изобретение относится к способу биокаталитической конверсии дибензотиофена, который включает окисление исходного соединения пероксидом водорода в присутствии в качестве биокатализатора гемоглобина в смеси буферного раствора с ацетонитрилом, новизна которого заключается в том, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002527050
Дата охранного документа: 27.08.2014
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
20.01.2016
№216.013.a0c7

Химически модифицированный планарный оптический сенсор, способ его изготовления и способ анализа полиароматических гетероциклических серосодержащих соединений с его помощью

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный...
Тип: Изобретение
Номер охранного документа: 0002572801
Дата охранного документа: 20.01.2016
26.08.2017
№217.015.eac7

Композиция, обладающая гкр-активностью для определения полиароматических гетероциклических серосодержащих соединений в углеводородных продуктах, способ получения композиции, планарный твердофазный оптический сенсор на ее основе и способ его получения, применение сенсора для анализа полиароматических гетероциклических серосодержащих соединений

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627980
Дата охранного документа: 14.08.2017
Показаны записи 141-150 из 163.
19.01.2018
№218.016.00a3

Способ получения пористого координационного полимера mof-177

Изобретение относится к способу получения пористых координационных полимеров структуры MOF-177. Способ включает смешение соли - ацетата цинка и 1,3,5-трифенилбензол-p,p',p''-трикарбоновой кислоты, взятых в массовом соотношении 2,5-4,5:1, в присутствии растворителя, в количестве, достаточном для...
Тип: Изобретение
Номер охранного документа: 0002629361
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00a7

Спиро[2.3]гексановые аминокислоты - конформационно-жесткие аналоги γ-аминомасляной кислоты - и способы их получения

Изобретение относится к 5-аминоспиро[2.3]гексан-1-фосфоновой кислоте указанной ниже формулы, которая является конформационно-жестким аналогом γ-аминомасляной кислоты и обладает психотропным действием. Изобретение относится также к способу получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты....
Тип: Изобретение
Номер охранного документа: 0002629357
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0268

Способ получения мелкокристаллического алюмината магния

Изобретение относится к области синтеза мелкокристаллического алюмината магния, используемого в качестве сырья для изготовления монокристаллов и светопропускающей алюмомагниевой керамики. Способ включает обработку в автоклаве паром воды исходной смеси, включающей взятые в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002630112
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0367

Моноклональное антитело, связывающееся с гликопротеином вируса эбола, фрагменты днк, кодирующие указанное антитело, и антигенсвязывающий фрагмент

Изобретение относится к области биотехнологии и биохимии, а именно к моноклональному антителу, селективно связывающему гликопротеин вируса Эбола с константой диссоциации комплекса 2,6⋅10 М, а также изолированному фрагменту ДНК, кодирующему участки легкой и тяжелой цепей указанного антитела, и...
Тип: Изобретение
Номер охранного документа: 0002630304
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0568

Способ определения бактериальной контаминации биоматериалов

Изобретение относится к области биотехнологии. Заявлен способ определения бактериальной контаминации культур клеток человека, а также лекарственных средств и биоматериалов на их основе при помощи ПЦР-амплификации последовательности ДНК гена бактериальной 16s РНК, универсальной для всех видов...
Тип: Изобретение
Номер охранного документа: 0002630673
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1c73

Способ оценки безопасности биомедицинских клеточных продуктов

Изобретение относится к области медицины и предназначено для оценки безопасности биомедицинского клеточного продукта (БМКП). Устанавливаются контрольные количественные величины, характеризующие уровень теломеразной активности в клетках с различным туморогенным потенциалом. Сопоставляются уровни...
Тип: Изобретение
Номер охранного документа: 0002640487
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.1eff

Устройство для преобразования возобновляемой энергии

Изобретение относится к устройствам для преобразования возобновляемой энергии. Устройство для преобразования возобновляемой энергии содержит раму, установленный на раме кривошипно-шатунный механизм, вал которого шарнирно связан шатуном и соединительным звеном с рамой; лопасть, жестко...
Тип: Изобретение
Номер охранного документа: 0002641176
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f7d

Высокотемпературная сверхпроводящая пленка на кристаллической кварцевой подложке и способ ее получения

Изобретение относится к криогенной технике и может быть использовано в технологии высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения (с использованием гибких диэлектрических носителей) с применениями как в сильноточной сверхпроводниковой технике (например, сверхпроводящие...
Тип: Изобретение
Номер охранного документа: 0002641099
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22c8

Способ получения углеводородных продуктов из керогенсодержащих пород

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей до фракций до...
Тип: Изобретение
Номер охранного документа: 0002641914
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.23e6

Способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом с

Изобретение относится к области молекулярной биологии и медицинской генетики. Предложен способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом С (ХГС). Осуществляют получение образца геномной ДНК больного, выявление полиморфизмов в генах ITGB3 1565 Т/С...
Тип: Изобретение
Номер охранного документа: 0002642626
Дата охранного документа: 25.01.2018
+ добавить свой РИД