×
27.06.2015
216.013.586d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АГЛОМЕРИРОВАННОГО ХЛОРИДА КАЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Способ получения агломерированного хлорида калия включает смешивание жидкой и твердой фаз с образованием суспензии, которую нагревают до температуры ее кипения. Затем выдерживают указанную температуру в течение 12-15 минут при перемешивании суспензии. В процессе нагрева и выдержки суспензию обрабатывают «острым» паром. Далее проводят охлаждение суспензии со скоростью (2-3)°C в минуту. Кристаллический агломерированный хлорид калия отделяют от жидкой фазы и сушат. В качестве твердой фазы суспензии используют циклонную пыль флотационного хлорида калия, а в качестве жидкой фазы - водный раствор хлорида калия со степенью насыщения 80-100%. Соотношение Ж/Т поддерживают в интервале 2-3. Изобретение позволяет повысить выход агломерированного хлорида калия со средним размером частиц 0,4-0,7 мм. 1 ил., 4 пр.
Основные результаты: Способ получения агломерированного хлорида калия, включающий смешивание жидкой (Ж) и твердой (Т) фаз с образованием суспензии, нагрев, охлаждение суспензии, отделение кристаллического агломерированного хлорида калия от жидкой фазы и сушку, отличающийся тем, что в качестве твердой фазы суспензии используют циклонную пыль флотационного хлорида калия, в качестве жидкой фазы - водный раствор хлорида калия со степенью насыщения 80-100%, соотношение Ж/Т поддерживают в интервале 2-3, нагрев суспензии осуществляют до температуры ее кипения, затем при перемешивании суспензии выдерживают указанную температуру в течение 12-15 минут, а в процессе нагрева и выдержки суспензию обрабатывают «острым» паром, причем последующее охлаждение суспензии проводят со скоростью (2-3)°C в минуту.

Изобретение относится к технологии производства хлорида калия и может быть использовано на флотационных калийных фабриках для переработки некондиционного продукта - циклонной пыли флотационного хлорида калия в товарный продукт.

Известен способ получения хлористого калия [RU 2315713, опубл. 27.01.2008 г.]. Способ включает растворение сильвинита, осветление горячего насыщенного щелока, кристаллизацию продукта в присутствии флотореагентов, сгущение и фильтрацию суспензии, обработку неосветленного насыщенного щелока. Осветленный насыщенный щелок перед кристаллизацией продукта обрабатывают горячим насыщенным по хлористому калию раствором, полученным растворением в воде некондиционного флотационного хлористого калия, который представляет собой циклонную пыль, мелкие фракции флотационного продукта или отфильтрованные промпродукты, и получают шламовую суспензию. Шламовую суспензию осветляют, а после осветления ее сгущают и направляют на обработку неосветленного насыщенного щелока.

Недостатками данного способа являются получение мелкодисперсного продукта, сложность осуществления процесса из-за большого количества операций, а также загрязнение галургического хлорида калия флотореагентами.

Наиболее близким к заявляемому является способ агломерации кристаллов хлорида калия [RU 2075441, опубл. 20.03.1997 г.] за счет частичного растворения исходной полидисперсной соли в растворе, ненасыщенном по хлоридам калия и натрия, при повышенной температуре с последующим охлаждением суспензии до низкой температуры. При проведении процесса производят растворение мелкой фракции и частичное растворение средней фракции за счет нагревания суспензии. Далее при охлаждении суспензии производят кристаллизацию из раствора хлорида калия на поверхности имеющихся кристаллов.

Недостатком этого способа является то, что он не применим для переработки флотационного хлорида калия, который загрязнен аминами, блокирующими рост кристаллов хлорида калия в процессе перекристаллизации.

Технический результат - получение высокого процента выхода агломерированного хлорида калия со средним размером частиц 0,4-0,7 мм путем переработки некондиционных продуктов калийных фабрик в виде циклонной пыли флотационного хлорида калия.

Сущность изобретения заключается в том, что при осуществлении способа получения агломерированного хлорида калия, включающего смешивание жидкой (Ж) и твердой (Т) фаз с образованием суспензии, нагрев, охлаждение суспензии, отделение кристаллического агломерированного хлорида калия от жидкой фазы и сушку, согласно изобретению, в качестве твердой фазы суспензии используют циклонную пыль флотационного хлорида калия, в качестве жидкой фазы - водный раствор хлорида калия со степенью насыщения 80-100%, соотношение Ж/Т поддерживают в интервале 2-3. Нагрев суспензии осуществляют до температуры ее кипения. При перемешивании суспензии выдерживают указанную температуру в течение 12-15 минут, а в процессе нагрева и выдержки суспензию обрабатывают «острым» паром, причем последующее охлаждение суспензии проводят со скоростью (2-3)°C в минуту.

Использование некондиционного продукта калийных фабрик в виде циклонной пыли флотационного хлорида калия со средним размером фракций 0,055 мм ранее для получения агломерированного продукта с размерами частиц 0,4-0,7 мм было практически невозможно в виду загрязнения аминами. Однако в процессе экспериментов было обнаружено, что подача «острого» пара непосредственно в суспензию позволила «отгонять» амины, которые блокируют рост кристаллов хлорида калия.

«Острый» (насыщенный водяной) пар обычно применяют при давлениях до 1,0-1,2 МПа, что соответствует температурам нагревания до 190°C. Применение этого способа нагревания обусловлено многими достоинствами насыщенного водяного пара как теплоносителя, среди которых необходимо отметить высокий коэффициент теплоотдачи; большое количество теплоты, выделяющейся при конденсации пара; равномерность обогрева; возможность тонкого регулирования температуры нагревания путем изменения давления пара; возможность передачи пара на большие расстояния. Известно, что пар вводят непосредственно в нагреваемый продукт. Этот способ нагрева используют в тех случаях, когда допустимо смешение нагреваемой среды с образующимся при конденсации пара конденсатом. При нагреве «острым» паром лучше используется энтальпия пара, т.к. паровой конденсат смешивается с нагреваемой жидкостью, в результате чего их температуры выравниваются. К тому же при вводе «острого» пара через барботер (трубу, закрытую с конца, расположенного у дна аппарата, и снабженную значительным числом мелких отверстий) происходит не только нагревание жидкости, но и интенсивное ее перемешивание (http://ohrana-bgd.narod.ru/ecolog25.html).

В качестве жидкой фазы использовали водный раствор хлорида калия со степенью насыщения раствора 80-100%, соответствующей концентрациям 8,90-11,15 мас.%. Если степень насыщения раствора менее 80% (концентрация раствора ниже 8,90 мас.%), то в процессе нагревания суспензии до температуры кипения наблюдалось полное растворение циклонной пыли, что было нежелательным эффектом, поскольку для получения среднего размера частиц 0,4-0,7 мм требуется растворение только мелкодисперсного хлорида калия (размером менее 0,05 мм). При степени насыщения более 100% (концентрации раствора выше 11,15 мас.%) не происходит растворение мелкодисперсного хлорида калия (размером менее 0,05 мм), что исключает эффект укрупнения мелкодисперсных частиц хлорида калия. По той же причине соотношение Ж/Т в суспензии должно составлять от 2 до 3. Если Ж/Т<2, то в раствор будет переходить малая часть (меньше 50%) мелкодисперсного хлорида калия, вследствие чего в суспензии останется много (более 50%) частиц, на которые при кристаллизации будет осуществляться кристаллизация, и степень укрупнения частиц не достигнет максимально возможного значения.

Нагрев суспензии до температуры ее кипения необходим для наибольшего растворения мелкодисперсного продукта. Если суспензию нагревать до температуры меньше температуры кипения, то растворится не весь мелкодисперсный хлорид калия, поэтому размер кристаллов после проведения перекристаллизации увеличится незначительно. Кроме того, кипение способствует наиболее полной отгонке аминов (блокирующих рост кристаллов KCl) с частиц циклонной пыли KCl.

Выдержка при этой температуре суспензии при перемешивании необходима для достижения полного насыщения раствора хлоридом калия, а также для отгонки аминов. Если выдержку суспензии при температуре кипения проводить менее 12 минут, то раствор не насыщается, на частицах KCl остается амин и степень укрупнения частиц не достигнет максимально возможного значения. Если выдержку суспензии при температуре кипения проводить более 15 минут, то возрастают энергозатраты, а степень укрупнения частиц практически не возрастает.

Скорость охлаждения суспензии не должна превышать 3°C в минуту, иначе в суспензии начнут образовываться новые центры кристаллизации, что приведет к образованию мелкокристаллического продукта. Скорость охлаждения суспензии менее 2°C в минуту недостаточна для проведения процесса кристаллизации с высокой производительностью, необходимой для производства.

На фигуре представлена таблица, которая иллюстрирует зависимость изменения dcp, В и Кук от режима агломерации, где

dcp - средний размер частиц агломерированного хлорида калия;

В - выход продукта;

Кук - коэффициент укрупнения, равный отношению среднего размера кристаллов после агломерации к среднему размеру кристаллов исходной циклонной пыли.

Заявляемый способ осуществляется следующим образом.

Суспензию готовили путем смешивания циклонной пыли флотационного хлорида калия со средним размером частиц 0,055 мм (Т) и водного раствора хлорида калия со степенью насыщения 80-100%. (Ж). Соотношение Ж/Т поддерживали в интервале 2-3. Нагрев суспензии до температуры кипения проводили при перемешивании и выдерживали 12-15 минут при указанной температуре. В процессе нагрева и выдержки суспензию обрабатывали «острым» паром с температурой 185°C в количестве, необходимом для поддержания температуры кипения суспензии. Последующее охлаждение суспензии проводили со скоростью (2-3)°C в минуту. Выход агломерированного продукта со средним размером частиц 0,4-0,7 мм составил 51-87%, а коэффициент укрупнения 7-12. Таким образом, заявляемый способ позволяет получать продукт со средним размером частиц в 7-12 раз больше, чем исходная пыль, а содержание мелкой фракции со средним размером менее 0,085 мм в агломерированном продукте не превышает 2,5%.

Пример 1

Циклонную пыль флотационного хлорида калия со средним размером частиц 0,055 мм подвергали переработке по следующему температурному режиму нагрев-охлаждение: (25-100-25)°C со скоростью нагрева и охлаждения суспензии 3°C в минуту. В качестве жидкой фазы использовали водный раствор хлорида калия со степенью насыщения 80% (концентрация 8,90 мас.%). Соотношение Ж/Т в суспензии поддерживали равным 3. Выдержку при температуре 100°C проводили в течение 15 минут. На стадиях нагревания и выдержки в суспензии подавали «острый» пар с температурой 185°C в количестве, необходимом для поддержания температуры кипения суспензии.

Отделение продукта от жидкой фазы после агломерации осуществляли фильтрацией под вакуумом с последующей промывкой осадков ацетоном и сушкой.

После проведения процесса средний размер частиц составил 0,7 мм, при этом выход продукта составил 51%.

Пример 2

Циклонную пыль флотационного хлорида калия со средним размером частиц 0,055 мм подвергали переработке по следующему температурному режиму нагрев-охлаждение: (25-100-25)°C со скоростью нагрева и охлаждения суспензии 3°C в минуту. В качестве жидкой фазы использовали водный раствор хлорида калия со степенью насыщения 100% (концентрация 11,15 мас.%). Соотношение Ж/Т в суспензии поддерживали равным 3. Выдержку при температуре 100°C проводили в течение 15 минут. На стадиях нагревания и выдержки в суспензии подавали «острый» пар с температурой 185°C в количестве, необходимом для поддержания температуры кипения суспензии.

Отделение продукта от жидкой фазы после агломерации осуществляли фильтрацией под вакуумом с последующей промывкой осадков ацетоном и сушкой.

После проведения процесса средний размер частиц составил 0,5 мм, при этом выход продукта составил 81%.

Пример 3

Циклонную пыль флотационного хлорида калия со средним размером частиц 0,055 мм подвергали переработке по следующему температурному режиму нагрев-охлаждение (25-100-25)°C со скоростью нагрева и охлаждения суспензии 3°C в минуту. В качестве жидкой фазы использовали водный раствор хлорида калия со степенью насыщения 100% (концентрация 11,15 мас.%). Соотношение Ж/Т в суспензии поддерживали равным 2. Выдержку при температуре 100°C проводили в течение 15 минут. На стадиях нагревания и выдержки в суспензии подавали «острый» пар с температурой 185°C в количестве, необходимом для поддержания температуры кипения суспензии.

Отделение продукта от жидкой фазы после агломерации осуществляли фильтрацией под вакуумом с последующей промывкой осадков ацетоном и сушкой.

После проведения процесса средний размер частиц составил 0,4 мм, при этом выход продукта составил 87%.

Пример 4

Циклонную пыль флотационного хлорида калия со средним размером частиц 0,055 мм подвергали переработке по следующему температурному режиму нагрев-охлаждение: (25-100-25)°C со скоростью нагрева и охлаждения суспензии 2°C в минуту. В качестве жидкой фазы использовали водный раствор хлорида калия со степенью насыщения 100% (концентрация 11,15 мас.%). Соотношение Ж/Т в суспензии поддерживали равным 3. Выдержку при температуре 100°C проводили в течение 12 минут. На стадиях нагревания и выдержки в суспензии подавали «острый» пар с температурой 185°C в количестве, необходимом для поддержания температуры кипения суспензии.

Отделение продукта от жидкой фазы после агломерации осуществляли фильтрацией под вакуумом с последующей промывкой осадков ацетоном и сушкой.

После проведения процесса средний размер частиц составил 0,5 мм, при этом выход продукта составил 79%.

Способ получения агломерированного хлорида калия, включающий смешивание жидкой (Ж) и твердой (Т) фаз с образованием суспензии, нагрев, охлаждение суспензии, отделение кристаллического агломерированного хлорида калия от жидкой фазы и сушку, отличающийся тем, что в качестве твердой фазы суспензии используют циклонную пыль флотационного хлорида калия, в качестве жидкой фазы - водный раствор хлорида калия со степенью насыщения 80-100%, соотношение Ж/Т поддерживают в интервале 2-3, нагрев суспензии осуществляют до температуры ее кипения, затем при перемешивании суспензии выдерживают указанную температуру в течение 12-15 минут, а в процессе нагрева и выдержки суспензию обрабатывают «острым» паром, причем последующее охлаждение суспензии проводят со скоростью (2-3)°C в минуту.
СПОСОБ ПОЛУЧЕНИЯ АГЛОМЕРИРОВАННОГО ХЛОРИДА КАЛИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 126.
27.08.2014
№216.012.ef48

Способ токовой защиты трехфазной сети от однофазных замыканий на землю

Использование: в области электротехники. Технический результат заключается в повышении селективности и надежности защиты. В способе в качестве контролируемой электрической величины используют ток обратной последовательности защищаемых линий, который выделяют путем измерения или вычисления, как...
Тип: Изобретение
Номер охранного документа: 0002527075
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f40f

Способ прессования биметаллических заготовок

Изобретение предназначено для снижения усилия прессования и энергоемкости процесса прессования биметаллических прутков и проволоки из биметаллических заготовок. Способ включает помещение биметаллической заготовки, состоящей из сердечника и оболочки, в замкнутый контейнер и выдавливание...
Тип: Изобретение
Номер охранного документа: 0002528302
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f886

Способ проветривания выемочного участка при обратном порядке отработки

Изобретение относится к горной промышленности и может быть использовано для проветривания выемочных участков панелей, в частности, калийных рудников. Технический результат заключается в повышении эффективности проветривания, что достигается за счет предотвращения утечек воздуха путем...
Тип: Изобретение
Номер охранного документа: 0002529459
Дата охранного документа: 27.09.2014
20.10.2014
№216.013.0004

Устройство для очистки трубопроводов

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса...
Тип: Изобретение
Номер охранного документа: 0002531396
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00d2

Измельчитель

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2....
Тип: Изобретение
Номер охранного документа: 0002531608
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0331

Устройство для получения металлического порошка

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в...
Тип: Изобретение
Номер охранного документа: 0002532215
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.04b2

Способ упрочнения крепежных изделий из низкоуглеродистой стали

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой. Способ получения крепежных изделий из низкоуглеродистой легированной стали типа 15Х3Г3МФТ включает горячую...
Тип: Изобретение
Номер охранного документа: 0002532600
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04cc

Способ электронно-лучевой сварки

Изобретение относится к способу электронно-лучевой сварки. Сварку осуществляют со сквозным проплавлением и регулированием мощности электронного пучка. В процессе сварки регистрируют частоту и продолжительность импульсов сквозного тока. Электронно-лучевую сварку проводят с осцилляцией...
Тип: Изобретение
Номер охранного документа: 0002532626
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04ce

Сталь для изготовления изделий с повышенной прокаливаемостью

Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в...
Тип: Изобретение
Номер охранного документа: 0002532628
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.087f

Способ получения многослойного многофункционального покрытия

Изобретение относится к нанесению ионно-плазменных покрытий. Способ получения многослойного покрытия на поверхности технологических инструментов включает ионную очистку поверхности и нанесение слоев покрытия дуальной магнетронной системой с титановым и алюминиевым магнетронами. Слои покрытия...
Тип: Изобретение
Номер охранного документа: 0002533576
Дата охранного документа: 20.11.2014
Показаны записи 41-50 из 138.
27.08.2014
№216.012.ef48

Способ токовой защиты трехфазной сети от однофазных замыканий на землю

Использование: в области электротехники. Технический результат заключается в повышении селективности и надежности защиты. В способе в качестве контролируемой электрической величины используют ток обратной последовательности защищаемых линий, который выделяют путем измерения или вычисления, как...
Тип: Изобретение
Номер охранного документа: 0002527075
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f40f

Способ прессования биметаллических заготовок

Изобретение предназначено для снижения усилия прессования и энергоемкости процесса прессования биметаллических прутков и проволоки из биметаллических заготовок. Способ включает помещение биметаллической заготовки, состоящей из сердечника и оболочки, в замкнутый контейнер и выдавливание...
Тип: Изобретение
Номер охранного документа: 0002528302
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f886

Способ проветривания выемочного участка при обратном порядке отработки

Изобретение относится к горной промышленности и может быть использовано для проветривания выемочных участков панелей, в частности, калийных рудников. Технический результат заключается в повышении эффективности проветривания, что достигается за счет предотвращения утечек воздуха путем...
Тип: Изобретение
Номер охранного документа: 0002529459
Дата охранного документа: 27.09.2014
20.10.2014
№216.013.0004

Устройство для очистки трубопроводов

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса...
Тип: Изобретение
Номер охранного документа: 0002531396
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00d2

Измельчитель

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2....
Тип: Изобретение
Номер охранного документа: 0002531608
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0331

Устройство для получения металлического порошка

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в...
Тип: Изобретение
Номер охранного документа: 0002532215
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.04b2

Способ упрочнения крепежных изделий из низкоуглеродистой стали

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой. Способ получения крепежных изделий из низкоуглеродистой легированной стали типа 15Х3Г3МФТ включает горячую...
Тип: Изобретение
Номер охранного документа: 0002532600
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04cc

Способ электронно-лучевой сварки

Изобретение относится к способу электронно-лучевой сварки. Сварку осуществляют со сквозным проплавлением и регулированием мощности электронного пучка. В процессе сварки регистрируют частоту и продолжительность импульсов сквозного тока. Электронно-лучевую сварку проводят с осцилляцией...
Тип: Изобретение
Номер охранного документа: 0002532626
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04ce

Сталь для изготовления изделий с повышенной прокаливаемостью

Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в...
Тип: Изобретение
Номер охранного документа: 0002532628
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.087f

Способ получения многослойного многофункционального покрытия

Изобретение относится к нанесению ионно-плазменных покрытий. Способ получения многослойного покрытия на поверхности технологических инструментов включает ионную очистку поверхности и нанесение слоев покрытия дуальной магнетронной системой с титановым и алюминиевым магнетронами. Слои покрытия...
Тип: Изобретение
Номер охранного документа: 0002533576
Дата охранного документа: 20.11.2014
+ добавить свой РИД