×
20.06.2015
216.013.5738

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК СУЛЬФИДА СВИНЦА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия. Исходные компоненты берут в соотношении, равном ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8. Осаждение ведут при температуре 20-35°C в течение 10-50 минут. Изобретение позволяет получить наноструктурированные тонкие пленки сульфида свинца, активные в ближнем инфракрасном диапазоне, обеспечивает расширение рабочего спектрального диапазона и позволяет получать ширину запрещенной зоны в заранее указанном диапазоне за счет получения пленок с заданным заранее размером частиц. 1 табл., 2 пр.
Основные результаты: Способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, отличающийся тем, что исходные компоненты берут в соотношении, равном ацетат свинца: диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне.

Известен способ получения пленок сульфида свинца нанокристаллической структуры, включающий смешивание водного раствора этилксантата натрия или калия с водным раствором нитрата или ацетата свинца в определенном мольном соотношении для получения порошка этилксантата свинца; растворение полученного порошка в пиридине; нанесение прекурсора на подложку с последующим отжигом при температуре 120-300°C (патент CN 103073053, МПК B82Y 30/00; C01G 21/21; 2013 год).

К недостаткам способа относятся длительность и сложность процесса, обусловленная наличием трех стадий, необходимостью использования дополнительного оборудования, выделением токсичным паров этилксантата на стадии обжига. Кроме того, способ не обеспечивает возможность контроля за размером частиц сульфида свинца в нанодиапазоне.

Известен способ получения композиции, поглощающей в ближнем инфракрасном излучении в диапазоне от 800 до 2000 нм, включающей прозрачную смолу с распределенными в ней частицами сульфида свинца (патент JP H07179656, МПК B29D 7/00; C01G 21/21, 1995 год).

К недостаткам способа относятся: наличие матрицы, к которой, во-первых, предъявляются высокие требования по чистоте, однородности, прозрачности в диапазоне от 800 до 2000 нм; во-вторых, ее получение является многостадийным процессом с использованием органических соединений; использование частиц сульфида свинца размером около 12 мкм, что вносит ограничения на минимальную толщину получаемых изделий, толщина которых не может быть меньше 10 мкм, в то время как для нанотехники нужны пленки толщиной менее 1 мкм. Использование частиц с размером более 10 мкм делает невозможным контроль края полосы поглощения сульфида свинца, таким образом получаемые изделия поглощают ближнее инфракрасное излучение во всем диапазоне длин волн, а изменение концентрации сульфида свинца приводит лишь к изменению коэффициента поглощения в том же диапазоне.

Известен способ получения тонких пленок сульфида свинца нанокристаллической структуры путем осаждения на стеклянную подложку в течение 80 минут из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в прсутствии цитрата натрия и гидроксида натрия при рН=12 и температуре 52°C (С.И. Садовников, Н.С. Кожевникова, А.А. Ремпель "Структура и оптические свойства нанокристаллических пленок сульфида свинца". Физика и техника полупроводников, 2010, том 44, вып.10, с.1394-1404) (прототип).

Однако известный способ, во-первых, дает возможность варьировать диапазон ширины запрещенной зоны только в интервале 0,82-0,88 эВ (1450-1600 нм), во-вторых, не обеспечивает возможности получения запрещенной зоны в заранее заданном диапазоне.

Таким образом, перед авторами стояла задача разработать способ получения наноструктурированных полупроводниковых тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, обеспечивающий получение пленок с более широким диапазоном изменения запрещенной зоны и, главное, обеспечивающий возможность получать ширину запрещенной зоны в заранее заданном диапазоне.

Поставленная задача решена в предлагаемом способе получения наноструктурированных полупроводниковых тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающем осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, в котором исходные компоненты берут в соотношении, равном ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.

В настоящее время из патентной и научно-технической литературы не известен способ получения тонких пленок сульфида свинца, в котором исходные компоненты берут в предлагаемом соотношении и осаждение ведут при соблюдении временных и температурных параметров в предлагаемых пределах.

Исследования, проведенные авторами, позволили сделать вывод о прямой зависимости размера получаемых частиц сульфида свинца и ширины запрещенной зоны в ближнем инфракрасном диапазоне для пленок сульфида свинца, имеющих данный размер частиц. Таким образом, получая тонкие пленки с заранее заданным размером частиц, можно получать пленки сульфида свинца, характеризующиеся шириной запрещенной зоны в определенном интервале длин волн (излучаемых энергий). При этом существенным является соотношение исходных компонентов. Экспериментальным путем авторами установлено, что изменение соотношения содержания исходных компонентов в предлагаемых пределах, а именно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, позволяет при конкретном соотношении из предлагаемого интервала получать частицы определенного размера, что в свою очередь обусловливает наличие необходимой ширины запрещенной зоны. Причем нанесение на подложки из различных материалов наноструктурированных пленок высокого качества, не имеющих загрязнений, может быть осуществлено только при соблюдении предлагаемого соотношения компонентов, при выходе за предлагаемые пределы получают неоднородные пленки малой толщины, непригодные для дальнейшего использования.

В зависимости от соотношения исходных компонентов в реакционной смеси средний размер частиц, оцененный по уширению рентгеновских дифракционных отражений, меняется от 35-50 до 90-105 нм. Задавая конкретное соотношение компонентов на начальном этапе, можно получать необходимый размер частиц в пленках и регулировать его в диапазоне от 35 до 105 нм.

Методом рентгеновской дифракции установлено, что наноструктурированные пленки сульфида свинца, полученные предлагаемым способом, имеют кубическую структуру типа DO3, отличающуюся от структуры В1, характерной для крупнокристаллического сульфида свинца. Обработка рентгенограмм показала, что в кубической структуре пленок сульфида свинца атомы серы с вероятностями ≈0,84 и ≈ 0,08 неупорядоченно размещены на октаэдрических и тетраэдрических позициях 4(b) и 8(с) соответственно. С учетом структуры и степеней заполнения позиций 4(b) и 8(с) химическая формула сульфида свинца в полученных наноструктурированных пленках представлена как . Период кубической кристаллической решетки сульфида свинца в полученных пленках равен 0,59395±0, 00005 нм. Для полученных пленок характерен квантоворазмерный эффект, который проявляется в смещении края фундаментального поглощения в сторону коротких длин волн по сравнению с объемным кристаллом и ведет к появлению структурированного спектра, связанного с дискретизацией валентных подзон и зоны проводимости. Управляя размерами нанокристаллов сульфида свинца со структурой, отличной от В1, можно плавно смещать положение полосы поглощения, соответствующей первому экситонному переходу в широком спектральном диапазоне от 3000 до 800 нм (от 0,4эВ до 1,5 эВ), тем самым расширяя рабочий спектральный диапазон устройств, основанных на полупроводниковых свойствах.

Авторами на основе экспериментальных данных об оптическом поглощении доказано, что уменьшение среднего размера наночастиц в пленках, полученных в предлагаемых авторами условиях, приводит к увеличению ширины запрещенной зоны от 0,4 до 1,5 эВ. Анализ спектров оптического поглощения пленок позволил найти зависимость ширины запрещенной зоны в зависимости от размера частиц. Авторами установлено, что ширина запрещенной зоны увеличивается до 1,5 эВ при уменьшении среднего размера частиц до 35 нм.

Предлагаемый способ может быть осуществлен следующим образом. Готовят водные растворы ацетата свинца Pb(CH3COO)2 и диамида тиоугольной кислоты (NH2)2CS. Затем к ацетату свинца добавляют цитрат натрия NA3C6H5O7 в качестве комплексообразователя и гидроксид натрия NaOH для получения pH раствора в пределах 10-13. Затем к полученному раствору добавляют диамид тиоугольной кислоты. При этом соотношение исходных компонентов получают равным ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8. Осаждение из раствора, например, на стеклянную подложку осуществляют при температуре 20-35°C в течение 10-50 минут. Размеры частиц полученной пленки определяют рентгено-дифракционным методом и с помощью сканирующей электронной микроскопии. Ширину запрещенной зоны определяют из спектров оптического поглощения.

Предлагаемый способ иллюстрируется следующими примерами конкретного исполнения.

Пример 1. Готовят водный раствор 20 мл (0,5 М) ацетата свинца Pb(CH3COO)2 и 10 мл (1М) диамида тиоугольной кислоты (NH2)2CS. Затем к раствору ацетата свинца добавляют 10 мл (0,5М) цитрата натрия NA3C6H5O7 и 20 мл (2М) гидроксида натрия NaOH. Затем к полученному раствору добавляют раствор диамида тиоугольной кислоты и 140 мл дистиллированной воды. При этом pH раствора равно 12,8. Соотношение исходных компонентов равно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1:0,5:4. Осаждение из раствора на стеклянную подложку осуществляют при температуре 20°C в течение 50 минут. Данные по размеру частиц и ширине запрещенной зоны приведены в табл. (образец 6).

Пример 2. Готовят водный раствор 20 мл (0,5 М) ацетата свинца Pb(СН3СОО)2 и 10 мл (1М) диамида тиоугольной кислоты (NH2)2CS. Затем к раствору ацетата свинца добавляют 2 мл (0,5М) цитрата натрия Na3C6H5O7 и 20 мл (2М) гидроксида натрия NaOH. Затем к полученному раствору добавляют раствор диамида тиоугольной кислоты и 148 мл дистиллированной воды. При этом pH раствора равно 12,8. Соотношение исходных компонентов равно ацетат свинца : диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1:0,1:4. Осаждение из раствора на стеклянную подложку осуществляют при температуре 35°C в течение 10 минут. Данные по размеру частиц и ширине запрещенной зоны приведены в табл.(образец 4).

Таким образом, авторами предлагается способ получения наноструктурированных тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, обеспечивающий расширение рабочего спектрального диапазона и позволяющий получать ширину запрещенной зоны в заранее указанном диапазоне за счет получения пленок с заданным заранее размером частиц.

Способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата свинца и диамида тиоугольной кислоты в присутствии цитрата натрия и гидроксида натрия, отличающийся тем, что исходные компоненты берут в соотношении, равном ацетат свинца: диамид тиоугольной кислоты : цитрат натрия : гидроксид натрия = 1:1÷2:0,1÷2:1÷8, и осаждение ведут при температуре 20-35°C в течение 10-50 минут.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 99.
25.08.2017
№217.015.9fba

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава LiLaNdHoErDyHfO, где x=2.5⋅10-1⋅10, y=1.6⋅10-4.7⋅10, z=1.5⋅10, n=1.2⋅10-4.7⋅10. Также предложен его способ...
Тип: Изобретение
Номер охранного документа: 0002606229
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f3ca

Способ получения гетеронаноструктур ags/ag

Изобретение относится к области получения нанокристаллических композиционных материалов, содержащих полупроводниковые и металлические наночастицы, и может быть использовано в оптоэлектронике и наноэлектронике в качестве переключателей сопротивления и энергонезависимых устройствах памяти. Способ...
Тип: Изобретение
Номер охранного документа: 0002637710
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
Показаны записи 31-40 из 41.
25.08.2017
№217.015.9fba

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава LiLaNdHoErDyHfO, где x=2.5⋅10-1⋅10, y=1.6⋅10-4.7⋅10, z=1.5⋅10, n=1.2⋅10-4.7⋅10. Также предложен его способ...
Тип: Изобретение
Номер охранного документа: 0002606229
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
29.12.2017
№217.015.f3ca

Способ получения гетеронаноструктур ags/ag

Изобретение относится к области получения нанокристаллических композиционных материалов, содержащих полупроводниковые и металлические наночастицы, и может быть использовано в оптоэлектронике и наноэлектронике в качестве переключателей сопротивления и энергонезависимых устройствах памяти. Способ...
Тип: Изобретение
Номер охранного документа: 0002637710
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
27.06.2020
№220.018.2c35

Биоактивный композиционный материал

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов. Предложен биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован монооксид титана. Материал содержит в качестве монооксида титана сверхстехиометрический...
Тип: Изобретение
Номер охранного документа: 0002724611
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.4478

Способ получения фотокатализатора на основе нанотубулярного диоксида титана

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе...
Тип: Изобретение
Номер охранного документа: 0002732130
Дата охранного документа: 11.09.2020
+ добавить свой РИД