×
10.06.2015
216.013.5164

ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002552357
Дата охранного документа
10.06.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электролиту для суперконденсатора, включающему соль тетрафторборат N-метил-N-н-пропил-пирролидиния и сульфолан при следующем соотношении названных компонентов, масс.%: соль тетрафторборат N-метил-N-н-пропил-пирролидиния - 20-80; сульфолан - 80-20. Предложенный электролит имеет температуру плавления ниже комнатной и одновременно увеличенную проводимость во всей температурной области стабильности жидкой фазы при сохранении термостойкости, электрохимической стабильности и низкой стоимости. 1 табл., 4 ил.
Основные результаты: Электролит для суперконденсатора, включающий соль тетрафторборат N-метил-N-н-пропил-пирролидиния, отличающийся тем, что он содержит также сульфолан при следующем соотношении названных компонентов, масс.%:
Реферат Свернуть Развернуть

Изобретение относится к электролитам для химических источников тока и может использоваться в упомянутых химических источниках тока, преимущественно в суперконденсаторах.

Для создания суперконденсаторов с большими удельной мощностью, удельной запасаемой энергией и надежностью необходимо, чтобы используемый в них электролит обладал высокой проводимостью, высоким значением напряжения разложения и выдерживал локальные перегревы, которые происходят при разрядке большими токами. А при применении суперконденсаторов в силовых устройствах гибридных или электрических автомобилей, когда требуется обеспечить высокую энергоемкость и мощность двигателя, необходимо также использовать электролиты, стойкие к воздействию электрического поля.

Электролиты - водные растворы - характеризуются низкими значениями напряжения пробоя. Кроме того, они не выдерживают сильного перегрева вследствие низкой температуры кипения. Поэтому для применения в электролитических конденсаторах и суперконденсаторах предпочтительны органические электролиты, обладающие более высокими значениями напряжения разложения.

Примером таких органических электролитов являются растворы неорганических солей в ацетонитриле, которые обладают хорошей растворимостью и высокой ионной проводимостью. Недостатком этих растворов является низкая температура кипения ацетонитрила (82°C) и относительно низкое напряжение его электрохимического разложения ~3 В, ширина электрохимического окна ~6 В [1]. Кроме того, при низкой температуре происходит выпадение соли в осадок, что приводит к резкому падению проводимости электролита.

Для увеличения растворимости, а следовательно, и проводимости электролита необходимо использовать растворитель с высокой диэлектрической проницаемостью. К таким растворителям относятся: пропиленкарбонат, этиленкарбонат, гамма-бутиролактон и другие. Эти растворители имеет более высокую температуру кипения, однако напряжение их электрохимического разложения не превышает 2.5 В [1], а растворимость солей в этом электролите гораздо ниже, чем в ацетонитриле.

В качестве электролитов предложено использовать асимметричные четвертичные соли аммония, растворенные в полярных органических растворителях [2, 3]. Четвертичные соли аммония с фторосодержащими анионами, например тетрафторборат тетраэтиламмония, тетрафторборат триэтилметиламмония и т.д., обладают высокой электрохимической стабильностью [4] и наиболее хорошо подходят для применения в суперконденсаторах. Однако растворимость этих солей в органических солях невелика.

В качестве электролитов для суперконденсаторов могут использоваться ионные жидкости - расплавы ионных солей, которые совмещают свойства растворителя и электролита, обладают широкими областями термической стабильности и существования жидкого состояния. Ионные жидкости способны растворить большее количество соли по сравнению с обычными растворителями, они обладают низким давлением паров, не являются легковоспламеняющимися, поэтому могут служить в качестве антипиренов в составе электролита.

В настоящее время известно большое количество ионных жидкостей [4-6]. Среди них наиболее широкое применение нашли соли имидазолиния, в частности тетрафторборат 1-этил-3-метилимидазолия ([EMI]BF4). Эта соль имеет высокую проводимость и может быть использована в суперконденсаторах, устойчивых к нагреву. Однако в целом соли имидазолия обладают относительно низкой электрохимической стабильностью с напряжением разложения ниже 2,5 В (электрохимическое окно не превышает 5 В).

Известны ионные жидкости, содержащие катион четырехзамещенного аммония с алифатическими заместителями [7], имеющие ширину электрохимического окна до 5.8 В и напряжение разложения 2.9 В. Недостатками этих солей являются высокие температуры плавления, высокая вязкость и низкая ионная проводимость. И хотя проводимость можно увеличить при их смешивании с органическим растворителем, величина электропроводности остается относительно низкой. Предложены различные варианты заместителей четвертичного катиона аммония, среди которых следует отметить электролиты с алкокси-алкильными заместителями [8, 9]. Эти соли имеют пониженные температуры плавления и сохраняют высокую электрохимическую стабильность (напряжение разложения выше 3.2 В). Недостатками этих электролитов являются относительно низкая проводимость и сложность синтеза.

Известна соль тетрафторборат N-метил-N-н-пропил-пирролидиния [(СН3)-(н-С3Н7)-NC4H8]BF4 (далее [MPPy]BF4), которая может использоваться как электролит [10]. Эта соль имеет температуру плавления около 60°C, а в расплавленном состоянии - относительно высокую проводимость и высокое значение напряжения электрохимического разложения, что могло бы позволить использовать ее в суперконденсаторах в качестве электролита. Соль [MPPy]BF4 легко синтезируется с высоким выходом, т.е. при массовом производстве она будет дешевле солей имидазолия и солей замещенного аммония с алкоксиалькильными заместителями.

Электролит из соли [MPPy]BF4 выбран за прототип изобретения. Недостатком прототипа является его сравнительно высокая температура плавления, что снижает диапазон использования его по температуре и дополнительно увеличивает энергозатраты на приведение его в рабочее состояние.

Изобретение решает задачу создания электролита на основе соли тетрафторборат N-метил-N-н-пропил-пирролидиния [(СН3)-(н-С3Н7)-NC4H8]BF4, имеющего температуру плавления ниже комнатной температуры (25°C), с одновременным увеличением проводимости во всей температурной области стабильности жидкой фазы при сохранении термостойкости, электрохимической стабильности и низкой стоимости электролита.

Поставленная задача решается тем, что предлагается электролит, содержащий, масс.%:

соль тетрафторборат N-метил-N-н-пропил-пирролидиния [(СН3)-(н-С3Н7)-NC4H8]BF4 20-80
сульфолан C4H8SO2 80-20

Чистый сульфолан - твердое вещество с температурой плавления 75°C. Отличительной чертой сульфолана является то, что в расплавленном состоянии он представляет собой сильно полярное вещество-растворитель с относительной диэлектрической проницаемостью 44, температурой кипения 285°C, химически устойчивое в окислительных и восстановительных средах и обладающее высоким напряжением электрохимического разложения - выше 2.5 В [11].

На фиг.1 приведена диаграмма плавкости системы [MPPy]BF4 - сульфолан. Светлыми точками обозначены температуры стеклования.

На фиг.2 приведены температурные зависимости проводимости системы [MPPy]BF4 - сульфолан. Цифрами указаны значения массовой доли сульфолана в электролите.

На фиг.3 приведен график зависимости проводимости от состава системы [MPPy]BF4 - сульфолан при 25 и 100°C.

На фиг.4 приведены вольтамперные кривые электролитов [MPPy]BF4 - сульфолан, полученные по симметричной схеме с углеродными электродами при 25 и 100°C. Съемка проводилась при скорости развертки напряжения 10 мВ/с. Напряжение разложения определяли как точку наиболее резкого измерения наклона вольтамперной кривой, электрохимическое окно - как расстояния между этими точками.

Как следует из диаграммы плавкости системы [MPPy]BF4 - сульфолан, представленной на фиг.1, названные вещества образуют низкоплавкую эвтектику, температуру плавления которой установить не удается вследствие стеклования образцов. Температура стеклования образцов, содержащих 40-60 масс.% сульфолана, обозначена серыми точками и составляет - 8±2°C. При комнатной температуре составы, содержащие менее 20 масс.% сульфолана, остаются твердыми.

Как следует из температурных зависимостей проводимости системы [MPPy]BF4 - сульфолан, представленных на фиг.2, в области концентрации сульфолана 20-60 масс.% составы представляют собой жидкие электролиты с проводимостью 3.5-9.6 мСм/см, которая близка к проводимости ионной жидкостей на основе солей имидазолия [4-6].

Кривая зависимости проводимости системы [MPPy]BF4 - сульфолан от ее массового состава имеет максимум при 40 масс.% сульфолана, как показано на фиг.3. Возможной причиной появления упомянутого максимума является уменьшение вязкости расплава соли [MPPy]BF4 при добавлении сульфолана, который обладает пониженной вязкостью. При увеличении содержания сульфолана выше 40 масс.% проводимость начинает уменьшаться вследствие увеличения общего содержания диэлектрической фазы сульфолана, а при содержании сульфолана более 80 масс.% составы становятся твердыми.

Все жидкие составы системы [MPPy]BF4 - сульфолан характеризуются высокой электрохимической стабильностью, как видно из фиг.4, напряжение разложения этих электролитов при комнатной температуре превышает 3.5 В, а ширина электрохимического окна превышает 7 В, что сравнимо с лучшими известными электролитами, перспективными для применения в суперконденсаторах. При 100°C ширина электрохимического окна снижается до 6 В, оставаясь выше, чем у солей имидазолия. Электролиты термически стабильны до температур не ниже 200°C на воздухе и не ниже 150°C в вакууме.

Оба компонента эвтектики [MPPy]BF4 и сульфолан легко синтезируются и очищаются от примесей влаги вакуумным прогревом или перегонкой. Сульфолан - серийно выпускаемый промышленный реагент - высокотемпературный растворитель, широко используемый в нефтяной и лакокрасочной промышленности. Исходя из этого, можно утверждать, что предлагаемый электролит дешевле аналогов, не уступая им по иным параметрам.

Пример 1. Берут соль [MPPy]BF4, дважды рекристаллизованную из сухого этанола, осушенную в вакууме при 100°C в течение 3 час, и исследуют ее термические свойства, проводимость и электрохимическую стабильность при различных температурах. Результаты исследований представлены на фиг.1-3 и в таблице.

Пример 2. Берут 80 мг соли [MPPy]BF4 и 20 мг сульфолана, смешивают в стеклянной чашке и прогревают смесь в вакууме при 120°C в течение 6 час для полной гомогенизации и осушки от следов влаги. Жидкий горячий расплав охлаждают до комнатной температуры и исследуют термические свойства, проводимость и электрохимическую стабильность полученного образца при различных температурах. Результаты исследований представлены на фиг.1-3 и в таблице.

Пример 3. В условиях Примера 2 берут 60 мг соли [MPPy]BF4 и 40 мг сульфолана. Результаты исследований представлены на фиг.1-3 и в таблице.

Пример 4. В условиях Примера 2 берут 40 мг соли [MPPy]BF4 и 60 мг сульфолана. Результаты исследований представлены на фиг.1-3 и в таблице.

Пример 5. В условиях Примера 2 берут 20 мг соли [MPPy]BF4 и 80 мг сульфолана. Результаты исследований представлены на фиг.1-3 и в таблице.

Как видно из данных таблицы, предлагаемый состав обеспечивает работу электролита при температурах ниже комнатной.

Литература:

1. H.J. Gores, J.M.G. Barthel, Nonaqueous electrolyte solutions: New materials for devices and processes based on recent applied research. Pure Appl. Chern., Vol.67, №6, p.919-930.

2. M. Ue, K. Ida, S. Mori. Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors. J. Electrochem. Soc. 1994. V.141. №11. Р.2989-2996.

3. Patent US 5418682 Capacitor having an electrolyte containing a mixture of dinitriles. 23.05.1995.

4. M. Galinski, A. Lewandowski, I. Stepniak, Electrochimica Acta 51 (2006) 5567-5580.

5. S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, S. Li. Ionic Liquids. Physicochemical properties. Elsevier. 2009.

6. W.R. Pitner, P. Kirsch, K. Kawata, H. Shinohara. Applications of Ionic Liquids in Electrolyte Systems. In: Handbook of Green Chemistry, Volume 6: Ionic Liquids (Ed. by P. Wasserscheid, A. Stark, Wiley-VCH, 2010, Weinheim), p.191-201.

7. Патент EP №1642894. Quaternary ammonium salt, electrolyte, and electrochemical device.

8. Заявка WO 2002/076924, Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery. 03.10.2002.

9. Патент 2329257. Электролит, электролитический состав и раствор, конденсатор, вторичный литиевый элемент и способ получения соли четвертичного аммония.

10. S. Forsyth, J. Golding, D.R. MacFarlane, M. Forsyth N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes Electrochimica Acta, Volume 46, Issues 10-11, 15 March 2001, Pages 1753-1757 http://www.sciencedirect.com/science/article/pii/S0013468600007817.

11. X. Sun, C.A. Angell. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications 11 (2009) 1418-1421.

Электролит для суперконденсатора, включающий соль тетрафторборат N-метил-N-н-пропил-пирролидиния, отличающийся тем, что он содержит также сульфолан при следующем соотношении названных компонентов, масс.%:
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА
ЭЛЕКТРОЛИТ ДЛЯ СУПЕРКОНДЕНСАТОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
10.04.2013
№216.012.32e5

Способ получения углеродных нанотрубок и реактор (варианты)

Изобретение может быть использовано в электронике, медицине, химии. В объеме реакционных камер 412 и 414 получают пары вещества катализатора испарением частично расплавленных электродов 435 и 445, выполненных в форме резервуара, наполненного металлом, содержащим катализатор. Электрический...
Тип: Изобретение
Номер охранного документа: 0002478572
Дата охранного документа: 10.04.2013
10.04.2014
№216.012.b17f

Способ получения композитного материала на основе алюминиевой матрицы

Изобретение относится к порошковой металлургии, в частности к получению металлоуглеродных композитных материалов в форме плоскопараллельных заготовок: плит, пластин, лент, фольги и др. Способ получения композитного материала на основе алюминиевой матрицы включает получение смеси порошков...
Тип: Изобретение
Номер охранного документа: 0002511154
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.df49

Суперконденсатор с неорганическим композиционным твердым электролитом (варианты)

Заявленное изобретение относится к области электротехники, а именно к устройству накопления энергии в виде суперконденсатора с неорганическим композиционным твердым электролитом. Заявленный суперконденсатор выполнен из композита, содержащего наноразмерный оксид LiMnМеO, где Me=Ni, Mn, а...
Тип: Изобретение
Номер охранного документа: 0002522947
Дата охранного документа: 20.07.2014
10.02.2015
№216.013.2557

Полые углеродные наночастицы, углеродный наноматериал и способ его получения

Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и...
Тип: Изобретение
Номер охранного документа: 0002541012
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25d9

Способ изменения исходного и поддержания заданного парциального давления кислорода

Изобретение относится к области регулирования парциального давления кислорода в газовой среде. Способ осуществляется в камере, оснащенной электрохимическим кислородным насосом, системой напуска и отвода газов и датчиком парциального давления кислорода в два этапа. Для форсированного изменения...
Тип: Изобретение
Номер охранного документа: 0002541142
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5254

Гибкий солнечный элемент

Изобретение относится к солнечным элементам и может использоваться в качестве преобразователя солнечной энергии в электрическую энергию в энергетике и в портативной электронике. Cолнечный элемент включает катод и анод, каждый из которых имеет внешний и внутренний гибкие слои, причем названные...
Тип: Изобретение
Номер охранного документа: 0002552597
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53f6

Стеклянный сосуд с покрытием

Изобретение относится к стеклянным сосудам и может использоваться при производстве художественной стеклотары, посуды, декоративных интерьерных изделий и др. в стекольной и других отраслях промышленности. Предложен сосуд из стекла, в частности бутылка, флакон или банка, который на внешней...
Тип: Изобретение
Номер охранного документа: 0002553015
Дата охранного документа: 10.06.2015
10.11.2015
№216.013.8cb5

Углеродное нановолокно и способ получения многостенных углеродных нанотрубок

Изобретение относится к нанотехнологии. Углеродное нановолокно с внешним диаметром 50-300 нм содержит внешнюю оболочку из аморфного углерода и сердцевину из более чем 1, но не более чем 20 отдельных одностенных или двустенных углеродных нанотрубок. Способ получения многостенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002567628
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a0ee

Металлическая фольга с проводящим слоем и способ ее изготовления

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен...
Тип: Изобретение
Номер охранного документа: 0002572840
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bd1e

Структура из углеродных нанотрубок

Изобретение может быть использовано при изготовлении добавок в смолы, керамику, металлы, смазочные материалы. Сначала смешивают наночастицы катализатора с потоком несущего газа, затем подают нагретый углеводород. Полученную рабочую смесь вводят в реакционную камеру, где углеводород разлагается...
Тип: Изобретение
Номер охранного документа: 0002573873
Дата охранного документа: 27.01.2016
Показаны записи 1-10 из 14.
10.04.2013
№216.012.32e5

Способ получения углеродных нанотрубок и реактор (варианты)

Изобретение может быть использовано в электронике, медицине, химии. В объеме реакционных камер 412 и 414 получают пары вещества катализатора испарением частично расплавленных электродов 435 и 445, выполненных в форме резервуара, наполненного металлом, содержащим катализатор. Электрический...
Тип: Изобретение
Номер охранного документа: 0002478572
Дата охранного документа: 10.04.2013
10.04.2014
№216.012.b17f

Способ получения композитного материала на основе алюминиевой матрицы

Изобретение относится к порошковой металлургии, в частности к получению металлоуглеродных композитных материалов в форме плоскопараллельных заготовок: плит, пластин, лент, фольги и др. Способ получения композитного материала на основе алюминиевой матрицы включает получение смеси порошков...
Тип: Изобретение
Номер охранного документа: 0002511154
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.df49

Суперконденсатор с неорганическим композиционным твердым электролитом (варианты)

Заявленное изобретение относится к области электротехники, а именно к устройству накопления энергии в виде суперконденсатора с неорганическим композиционным твердым электролитом. Заявленный суперконденсатор выполнен из композита, содержащего наноразмерный оксид LiMnМеO, где Me=Ni, Mn, а...
Тип: Изобретение
Номер охранного документа: 0002522947
Дата охранного документа: 20.07.2014
10.02.2015
№216.013.2557

Полые углеродные наночастицы, углеродный наноматериал и способ его получения

Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и...
Тип: Изобретение
Номер охранного документа: 0002541012
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25d9

Способ изменения исходного и поддержания заданного парциального давления кислорода

Изобретение относится к области регулирования парциального давления кислорода в газовой среде. Способ осуществляется в камере, оснащенной электрохимическим кислородным насосом, системой напуска и отвода газов и датчиком парциального давления кислорода в два этапа. Для форсированного изменения...
Тип: Изобретение
Номер охранного документа: 0002541142
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5254

Гибкий солнечный элемент

Изобретение относится к солнечным элементам и может использоваться в качестве преобразователя солнечной энергии в электрическую энергию в энергетике и в портативной электронике. Cолнечный элемент включает катод и анод, каждый из которых имеет внешний и внутренний гибкие слои, причем названные...
Тип: Изобретение
Номер охранного документа: 0002552597
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53f6

Стеклянный сосуд с покрытием

Изобретение относится к стеклянным сосудам и может использоваться при производстве художественной стеклотары, посуды, декоративных интерьерных изделий и др. в стекольной и других отраслях промышленности. Предложен сосуд из стекла, в частности бутылка, флакон или банка, который на внешней...
Тип: Изобретение
Номер охранного документа: 0002553015
Дата охранного документа: 10.06.2015
10.11.2015
№216.013.8cb5

Углеродное нановолокно и способ получения многостенных углеродных нанотрубок

Изобретение относится к нанотехнологии. Углеродное нановолокно с внешним диаметром 50-300 нм содержит внешнюю оболочку из аморфного углерода и сердцевину из более чем 1, но не более чем 20 отдельных одностенных или двустенных углеродных нанотрубок. Способ получения многостенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002567628
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a0ee

Металлическая фольга с проводящим слоем и способ ее изготовления

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен...
Тип: Изобретение
Номер охранного документа: 0002572840
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bd1e

Структура из углеродных нанотрубок

Изобретение может быть использовано при изготовлении добавок в смолы, керамику, металлы, смазочные материалы. Сначала смешивают наночастицы катализатора с потоком несущего газа, затем подают нагретый углеводород. Полученную рабочую смесь вводят в реакционную камеру, где углеводород разлагается...
Тип: Изобретение
Номер охранного документа: 0002573873
Дата охранного документа: 27.01.2016
+ добавить свой РИД