×
10.02.2015
216.013.2557

ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002541012
Дата охранного документа
10.02.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и способа его получения. Углеродная наночастица имеет средний размер не менее 5 нм и включает центральную внутреннюю полость и внешнюю замкнутую оболочку, охватывающую внутреннюю полость со всех сторон. При этом внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев. Углеродный материал содержит смесь полых углеродных наночастиц, включающих центральную внутреннюю полость и внешнюю замкнутую оболочку, охватывающую внутреннюю полость со всех сторон. При этом внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев, и одностенных и двустенных углеродных нанотрубок. Способ получения углеродного материала, состоящего из смеси полых углеродных наночастиц, и одностенных и двустенных углеродных нанотрубок, включает каталитическое разложение углеводородов при температуре 600-1200°C с получением смеси углеродных наночастиц, которую отделяют от газообразных продуктов и подвергают отжигу при температуре 1700-2400°C в атмосфере инертного газа. Изобретение обеспечивает получение новых углеродных наночастиц и наноматериалов, обладающих высокой прочностью при низком весе, которые могут использоваться для создания новых композитных легких и высокопрочных материалов. 3 н. и 1 з.п. ф-лы, 2 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к углеродным наноструктурам, углеродным наноматериалам на основе углеродных наноструктур, технологиям получения углеродных наноматериалов, и может быть использовано для получения углеродных наноструктур и материалов, которые в свою очередь могут применяться в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей и др.

Первая информация о таких наноструктурах, как нанотрубки, впервые появилась в 1991, а в настоящее время уже известно достаточно большое количество углеродных наноструктур.

Так, известны углеродные нановолокна - это наноструктура, состоящая из тонких нитей диаметром 3-15 микрон, образованных атомами углерода [Патент США №4 663 230, МПК D01F 9/127, D01F 9/12].

Известны также углеродные нанотрубки - углеродные волокна с отверстием, у которых стенка представляет собой, в основном, один слой атомов углерода [Патент США №5 424 054, МПК D01F 9/127, D01F 9/12].

Известны углеродные наноструктуры луковичной формы - нанолуковицы, образованные вложенными друг в друга углеродными сферами [Патент РФ №2094370].

Известен фуллерен - молекулярное соединение, принадлежащее классу аллотропных форм углерода, представляющее собой выпуклые замкнутые многогранники, составленные из четного числа трехкоординированных атомов углерода [Соколов В.И., Станкевич И.В. Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства//Успехи химии, т.62 (5), с.455, 1993].

Известны и другие, не упомянутые здесь, углеродные наноструктуры и их количество постоянно растет. Часть углеродных наноструктур уже нашла применение в ряде отраслей промышленности в качестве добавок к различным материалам, изменяющим свойства этих материалов. Например, углеродные нановолокна придают композитным материалам такие свойства, как большая прочность, повышенная электро- и теплопроводимость, высокая ударная вязкость, а содержащие их полимеры используют для деталей автомобилей, аэропланов, экранов, защищающих от электромагнитного излучения и др. В связи с особыми свойствами углеродных наноструктур прогнозируется расширение сферы их применения в дальнейшем.

Поскольку применение разных углеродных наноструктур в различных отраслях деятельности человека позволяет получать исключительно хорошие результаты, которые невозможно было заранее предвидеть, существует настоятельная потребность в новых углеродных наночастицах и наноматериалах, в частности в наночастицах, имеющих высокую прочность при низком весе.

Изобретение решает задачу получения новых высокопрочных углеродных наночастиц и наноматериалов, обладающих высокой прочностью при низком весе, которые могу использоваться для создания новых композитных легких и высокопрочных материалов.

Поставленная задача решается тем, что предлагается углеродная наночастица, имеющая средний размер не менее 5 нм, включающая внутреннюю центральную полость и внешнюю замкнутую оболочку, охватывающую названную внутреннюю полость со всех сторон, причем названная внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев.

Толщина внешней оболочки углеродной наночастицы, преимущественно, не превышает 20% ее размера.

Предлагается также углеродный наноматериал, содержащий вышеописанные наночастицы в смеси с одностенными и многостенными нанотрубками.

Предлагаемая углеродная наночастица изображена на Рис.1, где: 1 - центральная внутренняя полость, 2 - замкнутая оболочка, 3 - слои оболочки.

Частица на Рис.1 имеет пустую внутреннюю полость 1 и оболочку 2. Полость на рисунке показана довольно больших размеров, а оболочка 2 состоит из двух слоев углерода, расположенных почти концентрично. Однако частицы могут иметь центральную полость меньших размеров при большей толщине оболочки, состоящей из множества слоев углерода. Ее толщина может доходить до 20% размера частицы.

Фотография предлагаемого углеродного наноматериала приведена на Рис.2, где можно видеть полые углеродные наночастицы в смеси с нанотрубками.

Полые углеродные наночастицы получают в составе углеродного наноматериала, преимущественно путем каталитического разложения газообразных углеводородов с последующим высокотемпературным отжигом полученнного углеродного наноматериала.

Например, известен способ получения углеродных нанотрубок, в соответствии с которым в реакционной камере поддерживают температуру 500-1200°C и генерируют каталитический материал в форме пара, который далее конденсируется в объеме реакционной камеры с образованием свободных наночастиц катализатора, на поверхности которых образуются углеродные наноструктуры при разложении газообразных углеводородов [Патент США №8137653, МПК B01J 19/08, D01F9/127]. В этом способе образование паров вещества, содержащего катализатор, и наночастиц катализатора происходит непосредственно в объеме реакционной камеры. В этой же камере происходит и формирование углеродных наноструктур. Протекание таких разных по своей природе процессов в одном объеме затрудняет их контроль и оптимизацию. Соответственно, возникает проблема контроля свойств получаемых углеродных наноструктур. Этим способом получают в основном углеродные нанотрубки.

Углеродные полые наночастицы и углеродный наноматериал могут быть получены путем разложения в реакционной камере газообразных углеводородов в присутствии катализатора при температуре 600-1200°C и формирования углеродных наноструктур на поверхности названного катализатора. Для этого в реакционную камеру вводят смесь газообразных углеводородов и катализатор в форме свободных наночастиц в потоке газа - носителя. Сформированные на поверхности свободных наночастиц катализатора углеродные наноструктуры выводят из реакционной камеры в потоке газа и отделяют их от названного газа. Полученный таким образом углеродный материал состоит из углеродных нанотрубок, одностенных и двустенных, и наночастиц катализатора, покрытых аморфным углеродом в виде углеродной капсулы. Этот материал далее подвергают высокотемпературному отжигу при температуре 1700-2400°C. Отжиг может проводиться в вакууме или в атмосфере инертного газа из ряда: гелий, аргон, пеон, ксенон и др. При отжиге происходит выжигание вещества катализатора из углеродной капсулы. После выжигания получают углеродную наночастицу размером не менее 5 нм с пустой центральной полостью, которую со всех сторон охватывает углеродная оболочка, состоящая из слоев углерода. Центральная часть частицы - пустая, что отличает ее от нанолуковицы и обеспечивает ей небольшой вес. Оболочка может состоять из двух, трех, четырех, пяти и более слоев углерода. Каждый слой оболочки или большая их часть по своему строению подобен листу графена, принявшему замкнутую форму.

Поскольку частицы полые, а толщина оболочки составляет не более 20% их размера, они легкие, а их прочность довольно велика.

Как уже упоминалось выше, углеродный материал, который подвергают отжигу, изначально содержит, кроме закрытых углеродных капсул, одностенные и двустенные углеродные нанотрубки. Соответственно, отожженный наноматериал содержит полые углеродные наночастицы, а также одностенные и двустенные нанотрубки, как показано на Рис.2. Их количественное соотношение в составе материала может варьироваться и зависит от параметров процесса каталитического разложения газообразных углеводородов. Возможно подобрать параметры процесса таким образом, что содержание полых углеродных наночастиц в материале будет высоким - до 90%, а возможно - низким - менее 10%.

Получаемые полые частицы и содержащий их материал характеризуются повышенной прочностью и низким весом.

Пример 1

В камере испарения предварительно получают наночастицы, содержащие вещество катализатора. Камера испарения представляет собой объем, на дне которого расположены два электрода, выполненные в форме резервуаров, наполненных материалом, содержащим в своем составе вещество катализатора - железо (сталь марки Ст.3). Между электродами имеется стенка, в которой выполнен разрядный канал, концы которого подходят к этим электродам.

При подаче на электроды напряжения возникает дуговой разряд, проходящий в разрядном канале, через который пропускают плазмообразующий газ - азот в форме вихря, получаемого с помощью вихревой камеры, и в котором поддерживают ток 90 А. При этом происходит плавление стали в резервуарах электродов и ее испарение с образованием паров железа. Одновременно в камеру подают несущий газ, представляющий собой смесь водорода и азота в мольном соотношении 3/40. Пары железа в потоке несущего газа конденсируются в наночастицы. Затем несущий газ с наночастицами железа подают в узел смешения, куда также подают газообразный углеводород - метан, который предварительно нагревают до температуры 400°С. В результате перемешивания в узле смешения получают рабочую смесь.

Рабочую смесь нагревают до температуры 1100°С и подают в реакционную камеру, имеющую объем 1 м3 и диаметр 1 м. В реакционной камере поддерживают температуру 945°С. В результате каталитического разложения метана на наночастицах железа происходит рост углеродных нанотрубок. Продукты реакции пропускают через фильтр, где отделяют углеродный наноматериал от газа. Полученный наноматериал содержит наночастицы железа в углеродных оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 2000°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-7 нм - 31% и упомянутых одностенных и двустенных нанотрубок - остальное.

Пример 2

То же, что в примере 1, но в реакционной камере поддерживают температуру 600°С. В результате каталитического разложения метана на одной части наночастиц железа происходит рост углеродных нанотрубок, а на другой - образуются оболочки из аморфного углерода. Продукты реакции выводят из реакционной камеры и пропускают через фильтр, где отделяют углеродные наноструктуры от отходящего газа. Полученный наноматериал содержит наночастицы железа в оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 1700°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-12 нм - 76% и упомянутых одностенных и двустенных нанотрубок - остальное.

Пример 3

То же, что в примере 1, но в реакционной камере поддерживают температуру 1200°С. В результате каталитического разложения метана на одной части наночастиц железа происходит рост углеродных нанотрубок, а на другой образуются оболочки из аморфного углерода. Продукты реакции выводят из реакционной камеры и пропускают через фильтр, где отделяют углеродные наноструктуры от отходящего газа. Полученный наноматериал содержит наночастицы железа в оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 2400°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-7 нм - 12% и упомянутых одностенных и двустенных нанотрубок - остальное.


ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 16.
10.04.2013
№216.012.32e5

Способ получения углеродных нанотрубок и реактор (варианты)

Изобретение может быть использовано в электронике, медицине, химии. В объеме реакционных камер 412 и 414 получают пары вещества катализатора испарением частично расплавленных электродов 435 и 445, выполненных в форме резервуара, наполненного металлом, содержащим катализатор. Электрический...
Тип: Изобретение
Номер охранного документа: 0002478572
Дата охранного документа: 10.04.2013
20.03.2014
№216.012.abf7

Способ получения аппретированной алюмосиликатной микросферы

Изобретение относится к получению полых алюмосиликатных микросфер из зол уноса угольных ТЭЦ, пригодных к эксплуатации при высоких гидростатических давлениях как наполнитель буровых и тампонажных растворов для глубоких нефтяных и газовых скважин, капитального ремонта продуктивных скважин. В...
Тип: Изобретение
Номер охранного документа: 0002509738
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b17f

Способ получения композитного материала на основе алюминиевой матрицы

Изобретение относится к порошковой металлургии, в частности к получению металлоуглеродных композитных материалов в форме плоскопараллельных заготовок: плит, пластин, лент, фольги и др. Способ получения композитного материала на основе алюминиевой матрицы включает получение смеси порошков...
Тип: Изобретение
Номер охранного документа: 0002511154
Дата охранного документа: 10.04.2014
20.11.2014
№216.013.0623

Магистральный газопровод

Изобретение относится к магистральному трубопроводному транспорту, предназначенному, преимущественно, для транспортировки газа. Газопровод содержит линейные участки труб для перемещения транспортируемого газа от входа названного участка к его выходу, при этом, по меньшей мере, на части линейных...
Тип: Изобретение
Номер охранного документа: 0002532972
Дата охранного документа: 20.11.2014
10.06.2015
№216.013.5164

Электролит для суперконденсатора

Изобретение относится к электролиту для суперконденсатора, включающему соль тетрафторборат N-метил-N-н-пропил-пирролидиния и сульфолан при следующем соотношении названных компонентов, масс.%: соль тетрафторборат N-метил-N-н-пропил-пирролидиния - 20-80; сульфолан - 80-20. Предложенный электролит...
Тип: Изобретение
Номер охранного документа: 0002552357
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5254

Гибкий солнечный элемент

Изобретение относится к солнечным элементам и может использоваться в качестве преобразователя солнечной энергии в электрическую энергию в энергетике и в портативной электронике. Cолнечный элемент включает катод и анод, каждый из которых имеет внешний и внутренний гибкие слои, причем названные...
Тип: Изобретение
Номер охранного документа: 0002552597
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53f6

Стеклянный сосуд с покрытием

Изобретение относится к стеклянным сосудам и может использоваться при производстве художественной стеклотары, посуды, декоративных интерьерных изделий и др. в стекольной и других отраслях промышленности. Предложен сосуд из стекла, в частности бутылка, флакон или банка, который на внешней...
Тип: Изобретение
Номер охранного документа: 0002553015
Дата охранного документа: 10.06.2015
10.09.2015
№216.013.77e1

Способ получения наноструктурированного углеродного материала на основе технического углерода

Изобретение относится к технологиям получения наноструктурированного углеродного материала и может быть использовано в химической, электротехнической, машиностроительной промышленности при изготовлении усиливающих наполнителей резин и пластмасс, пигментов для типографских красок, в производстве...
Тип: Изобретение
Номер охранного документа: 0002562278
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8cb5

Углеродное нановолокно и способ получения многостенных углеродных нанотрубок

Изобретение относится к нанотехнологии. Углеродное нановолокно с внешним диаметром 50-300 нм содержит внешнюю оболочку из аморфного углерода и сердцевину из более чем 1, но не более чем 20 отдельных одностенных или двустенных углеродных нанотрубок. Способ получения многостенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002567628
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a0ee

Металлическая фольга с проводящим слоем и способ ее изготовления

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен...
Тип: Изобретение
Номер охранного документа: 0002572840
Дата охранного документа: 20.01.2016
Показаны записи 1-10 из 38.
10.04.2013
№216.012.32e5

Способ получения углеродных нанотрубок и реактор (варианты)

Изобретение может быть использовано в электронике, медицине, химии. В объеме реакционных камер 412 и 414 получают пары вещества катализатора испарением частично расплавленных электродов 435 и 445, выполненных в форме резервуара, наполненного металлом, содержащим катализатор. Электрический...
Тип: Изобретение
Номер охранного документа: 0002478572
Дата охранного документа: 10.04.2013
20.03.2014
№216.012.abf7

Способ получения аппретированной алюмосиликатной микросферы

Изобретение относится к получению полых алюмосиликатных микросфер из зол уноса угольных ТЭЦ, пригодных к эксплуатации при высоких гидростатических давлениях как наполнитель буровых и тампонажных растворов для глубоких нефтяных и газовых скважин, капитального ремонта продуктивных скважин. В...
Тип: Изобретение
Номер охранного документа: 0002509738
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b17f

Способ получения композитного материала на основе алюминиевой матрицы

Изобретение относится к порошковой металлургии, в частности к получению металлоуглеродных композитных материалов в форме плоскопараллельных заготовок: плит, пластин, лент, фольги и др. Способ получения композитного материала на основе алюминиевой матрицы включает получение смеси порошков...
Тип: Изобретение
Номер охранного документа: 0002511154
Дата охранного документа: 10.04.2014
20.11.2014
№216.013.0623

Магистральный газопровод

Изобретение относится к магистральному трубопроводному транспорту, предназначенному, преимущественно, для транспортировки газа. Газопровод содержит линейные участки труб для перемещения транспортируемого газа от входа названного участка к его выходу, при этом, по меньшей мере, на части линейных...
Тип: Изобретение
Номер охранного документа: 0002532972
Дата охранного документа: 20.11.2014
10.06.2015
№216.013.5164

Электролит для суперконденсатора

Изобретение относится к электролиту для суперконденсатора, включающему соль тетрафторборат N-метил-N-н-пропил-пирролидиния и сульфолан при следующем соотношении названных компонентов, масс.%: соль тетрафторборат N-метил-N-н-пропил-пирролидиния - 20-80; сульфолан - 80-20. Предложенный электролит...
Тип: Изобретение
Номер охранного документа: 0002552357
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5254

Гибкий солнечный элемент

Изобретение относится к солнечным элементам и может использоваться в качестве преобразователя солнечной энергии в электрическую энергию в энергетике и в портативной электронике. Cолнечный элемент включает катод и анод, каждый из которых имеет внешний и внутренний гибкие слои, причем названные...
Тип: Изобретение
Номер охранного документа: 0002552597
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53f6

Стеклянный сосуд с покрытием

Изобретение относится к стеклянным сосудам и может использоваться при производстве художественной стеклотары, посуды, декоративных интерьерных изделий и др. в стекольной и других отраслях промышленности. Предложен сосуд из стекла, в частности бутылка, флакон или банка, который на внешней...
Тип: Изобретение
Номер охранного документа: 0002553015
Дата охранного документа: 10.06.2015
10.09.2015
№216.013.77e1

Способ получения наноструктурированного углеродного материала на основе технического углерода

Изобретение относится к технологиям получения наноструктурированного углеродного материала и может быть использовано в химической, электротехнической, машиностроительной промышленности при изготовлении усиливающих наполнителей резин и пластмасс, пигментов для типографских красок, в производстве...
Тип: Изобретение
Номер охранного документа: 0002562278
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8cb5

Углеродное нановолокно и способ получения многостенных углеродных нанотрубок

Изобретение относится к нанотехнологии. Углеродное нановолокно с внешним диаметром 50-300 нм содержит внешнюю оболочку из аморфного углерода и сердцевину из более чем 1, но не более чем 20 отдельных одностенных или двустенных углеродных нанотрубок. Способ получения многостенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002567628
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a0ee

Металлическая фольга с проводящим слоем и способ ее изготовления

Изобретение относится к области электротехники, а именно к токосъемникам из металлической фольги для литий-ионных батарей и суперконденсаторов. Предложена металлическая фольга, поверхность которой снабжена проводящим слоем, включающим углеродные нанотрубки, при этом проводящий слой нанесен...
Тип: Изобретение
Номер охранного документа: 0002572840
Дата охранного документа: 20.01.2016
+ добавить свой РИД