×
20.05.2015
216.013.4d7f

Результат интеллектуальной деятельности: РЕЛЯТИВИСТСКИЙ МАГНЕТРОН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4), излучающую антенну (6), расположенную во внешнем канале связи (5) на расстоянии nλ+λ/4 от одного из резонаторов (2), и разрядник (7), расположенный на расстоянии kλ/4 от оси антенны (6), где n - целое число; λ - длина волны в волноводе; k - нечетное число. Технический результат - увеличение мощности выходных СВЧ-импульсов, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров системы. 2 ил.
Основные результаты: Релятивистский магнетрон, содержащий многорезонаторный анодный блок, коаксиальный с ним взрывоэмиссионный катод, внешнюю магнитную систему, излучающую антенну, расположенную во внешнем канале связи на расстоянии nλ+λ/4 от одного из резонаторов, и разрядник, расположенный на расстоянии kλ/4 от оси антенны, где n - целое число; λ - длина волны в волноводе; k - нечетное число.

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации коротких сверхмощных СВЧ-импульсов. Использование излучения СВЧ для таких применений, как тестирование радиоэлектронной аппаратуры, дальняя радиолокация с высоким пространственным разрешением, стерилизация и др. требует создания приборов максимальной мощности.

Известно устройство - релятивистский магнетрон, состоящий из многорезонаторного анодного блока с одним или несколькими волноводными выводами мощности [Винтизенко И.И., Новиков С.С. Релятивистские магнетронные СВЧ-генераторы с внешней связью резонаторов. Журнал технической физики, 2010, том 80, вып. 11, с. 95-104]. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. В качестве источников питания релятивистских магнетронов используются сильноточные электронные ускорители или линейные индукционные ускорители. В таких приборах анодный блок заземлен, а на катод подается импульс отрицательной полярности длительностью 50-1000 нс, амплитудой до 1000 кВ. Катод выполняется из металла или графита и работает в режиме взрывной электронной эмиссии. Ток, снимаемый с катода, может достигать десятков килоампер. В скрещенных радиальном электрическом поле между катодом и анодным блоком и аксиальном магнитном поле, создаваемом магнитной системой, электроны, эмитированные под действием взрывной электронной эмиссии, осуществляют движение в двух направлениях. Как в классическом магнетроне электроны, вращаясь азимутально в «спицах», отдают потенциальную энергию в энергию СВЧ-излучения и осуществляют радиальный дрейф к анодному блоку. Релятивистский магнетрон имеет один или несколько волноводных выводов мощности из резонаторов анодного блока, проходящих между катушками магнитного поля, выполненных в виде пары Гельмгольца. Выводы СВЧ-мощности связаны между собой посредством одного или нескольких волноводных каналов связи.

Канал связи запитывается от резонаторов релятивистского магнетрона с двух сторон бегущими СВЧ-волнами. В результате в течение импульса излучения образуется стоячая электромагнитная волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, должна составлять mλ+λ/2, где m - целое число. В этом случае поступающая от противоположного резонатора волна окажется в фазе с колебаниями в резонаторе (для анодного блока с указанным числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна, расположенная в канале связи, эффективно излучала в течение действия импульса СВЧ-излучения, она должна находиться в пучности стоячей волны, т.е. на расстоянии qλ/2 от резонатора, где q - целое число.

Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны) длина внешнего канала связи должна быть mλ, где m - целое число. Для расположения антенны в пучности стоячей волны она должна находиться во внешнем канале связи на расстоянии qλ/2 (q - целое число) от одного из резонаторов.

По сравнению с релятивистским магнетроном с одним выводом СВЧ-мощности применение каналов связи позволяет увеличить эффективность работы прибора, улучшить спектральные характеристики СВЧ-излучения, повысить стабильность амплитудно-временных характеристик генерируемых импульсов. Выходная мощность релятивистских магнетронов с внешними каналами связи составляет 200 - 500 МВт при длительности импульса излучения от десятков до сотен наносекунд.

Известно также устройство релятивистский магнетрон, к которому подключено устройство СВЧ-компрессии (СВЧ-компрессор) [Диденко А.Н., Винтизенко И.И., Мащенко А.И. и др. Резонансная компрессия СВЧ-импульсов на выходе релятивистского магнетрона. Доклады Академии Наук, 1999, т. 366, №5, с. 619-621]. Устройство состоит из многорезонаторного анодного блока с одним выводом мощности. Коаксиально многорезонаторному анодному блоку установлен катод, связанный посредством катододержателя с отрицательным выводом источника питания. Снаружи анодного блока расположены катушки магнитной системы. К выводу мощности релятивистского магнетрона посредством волноводного тракта или ферритового вентиля подключен СВЧ-компрессор. СВЧ-компрессор состоит из СВЧ-резонатора, СВЧ-разрядника, диафрагмы с отверстием связи, нагрузки и излучающей антенны вывода электромагнитного излучения в свободное пространство. Принцип работы компрессора основан на накоплении высокочастотной энергии в резонаторе от импульсного СВЧ-источника и быстром ее выводе в виде более коротких и мощных СВЧ-импульсов, чем поступающие в резонатор [Диденко А.Н., Юшков Ю.Г. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984. 112 с.]. Пиковая мощность излучения может быть увеличена в W раз в соответствии с соотношением

W = ηк t1/t2,

где ηк - КПД устройства компрессии,

t1 и t2 - длительности импульсов на входе и выходе компрессора соответственно. Указанное устройство принимаем за прототип.

Данный метод основан на накоплении энергии в высокодобротном резонаторе, где интенсивности полей могут многократно превышать интенсивность поля в исходном импульсе и ее последующем быстром выводе в нагрузку с помощью разрядника (коммутатора), модулирующего добротность резонатора. Для переключения резонатора в режим вывода СВЧ-энергии создается высоковольтный разряд с высокой концентрацией электронов. Появление плазмы приводит к резкому изменению картины стоячих волн, что обеспечивает быстрый вывод энергии из резонатора в антенну. Разряд может создаваться как в кварцевой трубке, так и непосредственно в объеме резонатора. При этом плазма может образовываться непосредственно под действием электромагнитных полей (самопробой) либо инициироваться внешним источником высокого напряжения.

На основе этого метода создана экспериментальная установка. Релятивистский магнетрон работает на частоте 2840 МГц и имеет мощность излучения до 200 МВт при длительности импульсов ~ 120 нс и частоте повторения 10 Гц. Компрессор изготовлен из волноводов сечением 7,2×3,4 см и представляет собой двойной волноводный тройник с симметричными короткозамкнутыми боковыми плечами. Возбуждение резонансной системы компрессора осуществляется через отверстие связи в широкой стенке волновода. Вывод энергии производится через Н-плечо тройника после срабатывания в режиме самопробоя газоразрядного СВЧ-коммутатора, расположенного от короткозамкнутой стенки на расстоянии четверти длины волны в волноводе. Минимальная длительность сформированных импульсов определяется временем двойного пробега волны с групповой скоростью вдоль одного из плеч тройника.

В процессе исследований релятивистского магнетрона с СВЧ-компрессором было установлено, что длительность процесса накопления энергии в резонаторе зависит от длины входного волноводного тракта между релятивистским магнетроном и компрессором. При длине тракта, равной 3 м, повышение напряженности поля в резонаторе продолжалось не более 30 нс. Примерно через такое же время во входных СВЧ-импульсах, регистрируемых в тракте от РМ, начинался спад амплитуды и сильная амплитудно-частотная модуляция. После срабатывания коммутатора на выходе компрессора регистрировались импульсы с пиковой мощностью до 480 МВт и длительностью ~ 5 нс на уровне половинной мощности. В этом случае импульсная мощность магнетрона не превышала 120 МВт.

После увеличения длины волноводного тракта до 10 м длительность импульсов от магнетрона в тракте и процесс возбуждения резонатора достигли 120 нс. Когда включался разрядник компрессора, из резонатора выводились СВЧ-импульсы длительностью ~ 5 нс с пиковой мощностью до 1100 МВт, при этом мощность выходных импульсов релятивистского магнетрона составляла 180 МВт.

Анализ результатов работы релятивистского магнетрона показал, что при питании резонатора СВЧ-компрессора от релятивистского магнетрона, как и от обычного классического магнетрона, требуется организовывать между ними определенную связь и уменьшать отраженную от диафрагмы резонатора волну в начальный период его возбуждения для эффективного затягивания частоты генератора высокодобротным накопительным резонатором компрессора. Это можно сделать при использовании развязывающих устройств: длинного волноводного тракта или включением в цепь связи между магнетроном и компрессором ферритового вентиля, позволившего устранить отраженную волну.

Таким образом, в данном устройстве осуществляется компрессии СВЧ-импульсов на выходе релятивистского магнетрона с увеличением мощности в 6 раз при частоте следования импульсов 10 Гц. Однако использование длинного (10 м) волноводного тракта приводило к значительным весогабаритным показателям установки, дополнительным потерям энергии при транспортировке СВЧ-энергии от релятивистского магнетрона до СВЧ-компрессора. Использование же ферритового вентиля снижало надежность устройства, поскольку используемый дорогостоящий промышленный вентиль не был рассчитан на работу с импульсами СВЧ-излучения мощностью в сотни мегаватт и быстро выходил из строя.

Задачей предлагаемого изобретения является увеличение мощности выходных СВЧ-импульсов релятивистского магнетрона, повышение стабильности характеристик генерируемых импульсов, уменьшение размеров и стоимости системы.

Технический результат заключается в уменьшении потерь СВЧ-энергии при компрессии, устранении элементов, создающих отраженные волны, увеличении надежности и снижении стоимости устройства за счет удаления из схемы развязывающих элементов, таких как волновод или ферритовый вентиль.

Указанный результат достигается тем, что релятивистский магнетрон с внешним каналом связи содержит многорезонаторный анодный блок с расположенным на оси взрывоэмиссионным катодом, внешнюю магнитную систему. Противоположные резонаторы анодного блока связаны волноводным внешним каналом связи. От прототипа он отличается тем, что во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число, λ - длина волны в волноводе) от одного из резонаторов установлена излучающая антенна и на расстоянии kλ/4 (k - нечетное число) от оси антенны расположен разрядник.

В предлагаемом устройстве внешний канал связи между резонаторами анодного блока исполняет роль резонатора СВЧ-компрессора. Роль диафрагмы с отверстием связи выполняет щель связи в стенках резонаторов анодного блока. В приборе-прототипе СВЧ-компрессор представлял собой отдельное устройство, связанное с релятивистским магнетроном длинным волноводным трактом или ферритовым вентилем.

Изобретение иллюстрируется фиг.1 и фиг.2. На фиг.1 показан релятивистский магнетрон, который имеет многорезонаторный анодный блок 1 с резонаторами 2. Количество резонаторов равно N/2=р, где р=4 - четное число. Коаксиально анодному блоку 1 установлен взрывоэмиссионный катод 3. Резонаторы 2 анодного блока 1 соединены между собой внешним каналом связи 5. Магнитная система 4 создает магнитное поле. Катод 3 с помощью катододержателя (на фиг.1 и фиг.2 не показан) связан с высоковольтным фланцем источника питания (на фиг.1 и фиг.2 не показан), от которого подается отрицательный импульс напряжения. В волноводном канале связи 5 для анодного блока 1 с числом резонаторов N/2=р, где р - четное число во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ+λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ+λ/2. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.

Для анодного блока с числом резонаторов N/2=р, где р=3 - нечетное число (фиг.2) во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов 2 установлена излучающая антенна 6 и на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Расстояние между осью антенны до противоположного резонатора составляет mλ-λ/4 (m - целое число). Таким образом, полная дина тракта между противоположными резонаторами составляет (n+m)λ. В этом случае СВЧ-волны, пришедшие от противоположных резонаторов, окажутся в фазе с колебаниями в резонаторах.

Предлагаемый релятивистский магнетрон содержит, как и прототип, многорезонаторный анодный блок 1 с резонаторами 2, связанными внешним каналом 5. Коаксиально анодному блоку установлен взрывоэмиссионный катод 3. Магнитная система 4 создает магнитное поле. Во внешнем канале связи 5 установлена излучающая антенна 6. Однако ее место расположения кардинально отличается от ее расположения в магнетронах с внешним каналом связи (прибор-аналог 1). В предлагаемом устройстве излучающая антенна установлена во внешнем канале связи на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов (в приборе аналоге 1 антенна установлена на расстоянии nλ+λ/2). На расстоянии kλ/4 (k - нечетное число) от оси антенны 6 расположен разрядник 7. Длина канала связи соответствует длине канала связи в приборе аналоге и зависит от количества резонаторов анодного блока (N/2 - четное или нечетное число).

Предлагаемое устройство за счет использования внешнего канала связи в качестве резонатора СВЧ-компрессора позволяет получить большую эффективность в сравнении с прибором-прототипом за счет сокращения потерь энергии, устранения отражений, уменьшения количество элементов, существенно снизить весогабаритные характеристики и стоимость, повысить надежность работы устройства.

Устройство работает следующим образом. Предварительно включается магнитная система 4, работающая в непрерывном или импульсном режимах. В момент достижения максимального магнитного поля источник питания формирует импульс отрицательной полярности (амплитуда напряжения 100-1000 кВ и ток 1-40 кА в зависимости от типа источника). Высоковольтный импульс подается на катод 3. В промежутке катод 3 - многорезонаторный анодный блок 1 создается высокая напряженность электрического поля, вызывающая развитие взрывной электронной эмиссии [Литвинов Е.А. и др. Автоэмиссионные и взрывоэмиссионные процессы при вакуумных разрядах. Успехи физических наук. Москва, 1983, т. 139, с. 265-302]. В скрещенных радиальном электрическом и аксиальном магнитном полях происходит образование электронных «спиц» пространственного заряда и процесс передачи энергии электронов в энергию СВЧ-излучения осуществляется так же, как в классическом магнетроне. Вывод СВЧ-излучения из резонаторов 2 анодного блока 1 осуществляется через щели в стенках резонаторов в волноводный внешний канал связи 5.

Внешний канал связи 5 запитывается с двух сторон бегущими от резонаторов СВЧ-волнами. В результате в течение импульса излучения образуется стоячая волна. Для анодного блока с числом резонаторов N/2=р, где р - четное число, длина канала связи, как и в приборе-прототипе, должна составлять (n+m)λ+λ|2, где n, m - целые числа. В этом случае поступающая от противоположного резонатора волна окажется в фазе с волной в резонаторе (для анодного блока с таким числом резонаторов колебания в противоположно расположенных резонаторах противофазны). Для того чтобы антенна 6 не излучала в процессе накопления энергии резонатором (внешним каналом связи), ее следует расположить в нуле стоячей волны, а именно на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.

Для анодного блока с числом резонаторов N/2=р, где р - нечетное число (колебания противоположных резонаторов синфазны), длина внешнего канала связи 5 должна быть (n+m)λ, где n, m - целые числа. Для расположения антенны 6 в нуле стоячей волны она должна находиться во внешнем канале связи 5 на расстоянии nλ+λ/4 (n - целое число) от одного из резонаторов.

Как в первом, так и во втором случаях на расстоянии kλ/4 (k - нечетное число) от оси антенны 6 располагается разрядник 7. При включении разрядника происходит вывод энергии из резонатора (канала связи) за счет резкого изменения связи резонатора с излучающей антенной. Включение разрядника может происходить в режиме самопробоя под действием нарастающего электрического поля запасаемых в резонаторе СВЧ-колебаний, а также при подаче высоковольтного импульса от внешнего генератора импульсов высокого напряжения.

Примером конкретного выполнения может служить релятивистский магнетрон 10-см диапазона длин волн с восемью резонаторами лопаточного типа с выходной мощностью до 300 МВт, разработанный и применяемый в Физико-техническом институте Томского политехнического университета. Схема прибора соответствует приведенной на фиг.1.

Внутренний диаметр анодного блока, выполненного из нержавеющей стали, составляет 43 мм, глубина резонаторов 21,5 мм, длина 72 мм. Графитовый катод имеет диаметр 20 мм. Канал связи соединяет противоположно расположенные резонаторы. Волновод 5 изготовлен из отрезка медного прямоугольного волновода, внутренним сечением 72х34 мм. Длина волны излучения магнетрона на π-виде колебаний 9,85 см. Тогда длина волны в волноводе 13,55 см. При работе релятивистского магнетрона на π-виде колебаний на длине канала должно укладываться (n+m+0,5)λ длин волн для того, чтобы волна, пришедшая от противоположного резонатора, была в фазе с колебаниями резонатора. Таким образом, длина канала связи составляет 169,4 см (12,5 λ). Чтобы антенна не излучала при возбуждении π-вида колебаний в процессе накопления энергии, она размещается симметрично от резонаторов, т.е. по оси канала связи. На расстоянии 3λ/4=10,2 см от оси антенны расположен управляемый разрядник, срабатывающий при подаче высоковольтного импульса (15 кВ) от внешнего источника (на фиг.2 не показан). Добротность резонатора по результатам «холодных» измерений составила ~200.

Ожидаемый коэффициент усиления выходной мощности заявляемого релятивистского магнетрона ~5, выходная мощность ~1,5 ГВт, длительность выходного импульса, равная времени двойного пробега электромагнитной волны по резонатору СВЧ-компрессора длиной 89,8 см, ~9-10 нс.

Релятивистский магнетрон, содержащий многорезонаторный анодный блок, коаксиальный с ним взрывоэмиссионный катод, внешнюю магнитную систему, излучающую антенну, расположенную во внешнем канале связи на расстоянии nλ+λ/4 от одного из резонаторов, и разрядник, расположенный на расстоянии kλ/4 от оси антенны, где n - целое число; λ - длина волны в волноводе; k - нечетное число.
РЕЛЯТИВИСТСКИЙ МАГНЕТРОН
РЕЛЯТИВИСТСКИЙ МАГНЕТРОН
Источник поступления информации: Роспатент

Показаны записи 81-90 из 143.
20.03.2015
№216.013.3224

Устройство компенсации погрешности измерения ультразвукового скважинного глубиномера

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и...
Тип: Изобретение
Номер охранного документа: 0002544311
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3225

Устройство для определения характеристик материалов

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик...
Тип: Изобретение
Номер охранного документа: 0002544312
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3264

Состав антиоксидантной композиции для улучшения качества питьевой воды

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002544375
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.343a

Сильноточный наносекундный ускоритель электронных пучков

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном...
Тип: Изобретение
Номер охранного документа: 0002544845
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3455

Сверхпроводящий быстродействующий размыкатель

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002544872
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.384c

Способ диагностики апоптоза лимфоцитов

Изобретение относится к медицине и может быть использовано для диагностики апоптоза лимфоцитов. Для этого клетки выделяют, инкубируют 48 часов при температуре 37°С и с 5% содержанием СО, с добавлением индуктора апоптоза дексаметазона в концентрации 10 моль/мл. Количественно определяют...
Тип: Изобретение
Номер охранного документа: 0002545900
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3933

Способ защиты синхронной электрической машины от витковых замыканий обмотки ротора

Изобретение относится к электротехнике и предназначено для защиты синхронных электрических машин от витковых замыканий обмотки ротора. Задачей изобретения является предотвращение отключений синхронной электрической машины при внешних переходных процессах. Способ защиты синхронной электрической...
Тип: Изобретение
Номер охранного документа: 0002546131
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cc8

Устройство для сварки

Устройство предназначено для импульсного питания сварочной дуги с плавящимся и неплавящимся электродами. Устройство состоит из источника питания 1, к положительному полюсу которого подсоединены коммутирующий дроссель 2 и силовой тиристор 3, зашунтированные последовательно включенными...
Тип: Изобретение
Номер охранного документа: 0002547048
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b0

Сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 10 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма...
Тип: Изобретение
Номер охранного документа: 0002548048
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41dd

Депрессорная присадка к дизельному топливу

Изобретение относится к депрессорной присадке к дизельному топливу, которая включает остаточные продукты нефтепереработки, при этом присадка содержит продукт окисления тяжелой пиролизной смолы и алкилароматические углеводороды при следующих соотношениях реагентов (маc.%): окисленная тяжелая...
Тип: Изобретение
Номер охранного документа: 0002548359
Дата охранного документа: 20.04.2015
Показаны записи 81-90 из 235.
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a758

Способ определения места обрыва одной фазы воздушной линии электропередачи

Изобретение относится к электротехнике, а именно к средствам обработки информации в электротехнике, и может бить использовано для определения места короткого замыкания на воздушной линии электропередачи. Способ основан на мониторинге электрической сети, отличающийся тем, что измеряют массивы...
Тип: Изобретение
Номер охранного документа: 0002508555
Дата охранного документа: 27.02.2014
+ добавить свой РИД