×
20.05.2015
216.013.4d5d

Результат интеллектуальной деятельности: СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии. Предложен способ деструкции рибонуклеиновых кислот. Раствор, содержащий рибонуклеиновую кислоту, пропускают через макропористый полиметакрилатный сорбент монолитного типа, содержащий иммобилизованную рибонуклеазу А, а затем через макропористый анионообменный сорбент монолитного типа. Используют следующую программу элюирования при скорости подвижной фазы 10 см/мин: на первой стадии используют раствор А, представляющий собой 0,02 М ТрисНСl буферный раствор, pH 7,5, на второй стадии используют раствор Б, представляющий собой раствор А, содержащий 7 моль/л мочевины, а также линейное градиентное элюирование от 0 до 100% раствором В, представляющим собой раствор Б, содержащий 1 моль/л хлорида натрия. Преимуществом изобретения является одновременное эффективное проведение деструкции РНК и мониторинг продуктов реакции за короткий промежуток времени при высоких скоростях подвижной фазы и низких рабочих давлениях. 1 з.п. ф-лы, 6 ил., 3 пр.

Данное изобретение относится к области биотехнологии. Изобретение может найти применение в биотехнологии, молекулярной биологии и фармакологии для деструкции рибонуклеиновых кислот (РНК) в биологических образцах.

В настоящее время для удаления РНК из биологических образцов, например при производстве вакцин, используют методы ферментативной деструкции РНК. В большинстве случаях деструкцию проводят, добавляя фермент (биокатализатор) в РНК-содержащий раствор. Однако данный подход нетехнологичен, так как сопряжен с потреблением больших количеств биокатализатора, загрязняющего целевой раствор. Более технологичными являются подходы, основанные на использовании иммобилизованных ферментов. Иммобилизация позволяет не только легко отделять биокатализатор от реакционной среды, но и использовать его многократно, что повышает эффективность технологического процесса.

В большинстве случаев применения иммобилизованных ферментов для решения тех или иных задач в качестве стационарной фазы используют сорбенты гелевого типа на основе природных [А.Д. Неклюдов, А.Н. Иванкин, О.П. Прошина, Г.Л. Олиференко. Способ получения иммобилизованной целлюлазы. 2010. Патент РФ №2388822] или синтетических полимеров [Г.И. Зверев, М.П. Лунин В.В. Способ получения иммобилизованных ферментов. 1996. Патент РФ 2054481].

Наиболее близким к заявляемому изобретению является способ деструкции РНК путем пропускания раствора через сорбент на основе целлюлозы или агарозы [A.Guissani born Trachtenberg, M.-N. Thang, Immobilized ribonuclease and alkaline phosphatase, 1977, US 4039382] или магнитного гидрогеля [Horak D., Rittich В.J., Safar A., Spanova J., Lenfeld N.J. Biotechnol. Prog. 17 (2001) 447], содержащих иммобилизованную рибонуклеазу.

Существенным недостатком данного способа является невысокая скорость процесса, обусловленная диффузионным механизмом межфазового массопереноса, а также непродолжительный срок службы сорбента вследствие ухудшения гидродинамических характеристик, являющихся следствием усадки геля. Кроме того, использование сорбентов гелевого типа не позволяет совместить процесс деструкции РНК со стадией анализа продуктов каталитической реакции в один технологический цикл в связи с существенным увеличением давления в системе.

Технической задачей и положительным результатом предлагаемого изобретения является способ деструкции РНК, сочетающий как стадию деструкции (биоконверсия), так и стадию мониторинга компонентов смеси (биосепарация) в одном непрерывном процессе. Указанная задача и технический результат достигаются в способе деструкции рибонуклеиновой кислоты, включающем проведение процесса в две последовательные непрерывные стадии, включающие биоконверсию и биосепарацию, где на первой стадии пропускают раствор образца, содержащего рибонуклеиновую кислоту сквозь макропористый полиметакрилатный сорбент монолитного типа, несущий иммобилизованную рибонуклеазу А, а на второй - адсорбцию компонентов образца на макропористом анионообменном сорбенте монолитного типа с их последующим градиентным элюированием. На первой стадии используют раствор А, представляющий собой 0.02 М буферный раствор трис(гидроксиметил)аминометана (ТрисHCl), pH 7.5, на второй стадии используют раствор Б, представляющий собой раствор А, содержащий 7 моль/л мочевины, а также линейное градиентное элюирование от 0 до 100% раствором В, представляющим собой раствор Б, содержащий 1 моль/л хлорида натрия. Детектирование продуктов деструкции проводят при длине волны 260 нм.

Заявляемый способ обладает совокупностью существенных признаков, которые включают:

(1) деструкцию РНК, которая происходит при пропускании раствора, содержащего РНК, сквозь макропористый полимерный сорбент монолитного типа, несущий иммобилизованную рибонуклеазу А;

(2) адсорбцию компонентов смеси, включая продукты деструкции РНК, на макропористом анионообменном сорбенте монолитного типа;

(3) селективную десорбцию компонентов смеси с поверхности сорбента в условиях градиентной элюции.

Положительный результат достигается вследствие использования на обеих стадиях процесса макропористых полимерных сорбентов монолитного типа со средним размером пор в пределах от 1.0 до 2.0 мкм и общей пористостью в пределах 55-65%. Данные сорбенты характеризуются высокой проницаемостью и доминированием конвективного массопереноса над диффузионным, что позволяет проводить процессы биоконверсии и биосепарации при высоких скоростях подвижной фазы (до 15 см/мин) и низких рабочих давлениях (от 0.1 до 1 МПа), и совмещать их в один технологический цикл.

Иммобилизация фермента через промежуточный альдегидсодержащий водорастворимый полимерный спейсер на основе функционального синтетического полимера улучшает доступность активного центра биокатализатора и, таким образом, повышает эффективность процесса биодеструкции. Использование данного способа иммобилизации позволяет сократить объем сорбента и количество иммобилизованного фермента, используемого на первой стадии, при сохранении эффективности процесса биодеструкции.

Пример 1. На первой стадии использовали макропористый полиметакрилатный сорбент монолитного типа со средним размером пор 1300±50 нм, пористостью 60±2% и объемом 0.83 мл, содержащий эпоксидные группы (сорбент 1). Иммобилизацию рибонуклеазы А проводили путем прямой реакции между аминогруппами фермента и эпоксидными группами сорбента. Для этого сквозь сорбент пропускали 1 мл раствора рибонуклеазы А в 0.1 M натрий-боратном буферном растворе, рН 8.4, с концентрацией 5 мг/мл, и инкубировали сорбент при температуре 22°С в течение 20 часов. После этого сорбент промывали 3 мл буфера в котором вели иммобилизацию, и затем 0.02 M буферным раствором трис(гидроксиметил)аминометана, рН 7.5, в течение 1 часа. Массу иммобилизованного фермента определяли по разности количества фермента в растворе до и после иммобилизации. Концентрацию фермента в растворе определи по методу Лоури-Фолина при длине волны 750 нм. Масса иммобилизованной рибонуклеазы составила 2.2±0.2 мг.

На второй стадии использовали макропористый анионообменный сорбент монолитного типа, со средним размером пор 1600 нм, пористостью 60±2% и объемом 0.34 мл, содержащий на поверхности диэтиламиноэтильные (ДЭАЭ) группы (сорбент 2).

300 мкл раствора РНК (молекулярная масса 25 кДа) с концентрацией 0.15 мг/мл в 0.02 M буферном растворе трис(гидроксиметил)аминометана, рН 7.5, наносили на сорбент 1. Сорбент 1 последовательно соединяли с сорбентом 2. На фиг.1 представлен вид исходной РНК (не прошедшей стадию деструкции), элюируемой через сорбент 2. Процесс деструкции РНК проводили по следующей программе элюирования: (1) 0-5 мин - 100% элюента А, представляющего собой 0.02М буферный раствор трис(гидроксиметил)-аминометана, рН 7.5; (2) 5-10 мин - 100% элюента Б, представляющего собой раствор А, содержащий 7 моль/л мочевины; (3) 10-20 мин от 0 до 100% элюента В, представляющего собой раствор Б, содержащий 1 моль/л хлорида натрия. Детектирование проводили при длине волне 260 нм. Скорость элюирования составляла 1 мл/мин (соответствует линейной скорости 10 см/мин). Давление в системе составляло 0.7 МПа. Фиг. 2 подтверждает протекание процесса деструкции РНК, что выражается в исчезновении широкого пика РНК (рис. 1) и появлении набора пиков, характеризующих образование олигорибонуклеотидов. Ультрафильтрация собранного элюата через мембрану 10 кДа и последующий спектрофотометрический анализ высокомолекулярной фракции при длине волны 260 нм показал, что доля рибонуклеиновой кислоты, оставшейся после проведения реакции деструкции, составила 10±3%. Таким образом, предложенный способ позволял достичь степени деградации РНК, близкой к 90%.

При этом олигонуклеотидная карта (фиг.3) совпадала с таковой, полученной при проведении процесса деструкции РНК рибонуклеазой А в растворе в течение 7 минут.

Пример 2. На первой стадии использовали макропористый полиметакрилатный сорбент монолитного типа со средним размером пор 1600+60 нм, пористостью 60±2% и объемом 0.34 мл, содержащий аминогруппы. Иммобилизацию фермента проводили в несколько стадий. На первой стадии сорбент заполняли 0.5 мл раствора альдегидсодержащего спейсера в 0.01 M натрий-фосфатном буфере, рН 7.0, с концентрацией 0.4 мг/мл и инкубировали при температуре 22°С в течение 1.5 часов. В качестве спейсера использовали раствор окисленного полимера М-метакрилоиламидо-О-глюкозы с молекулярной массой 22000 и содержанием альдегидных групп 25 мол.%. Затем сорбент промывали 0.01 M натрий-боратным буферным раствором, рН 8.4, и заполняли поровое пространство 0.5 мл раствора рибонуклеазы с концентрацией 5.0 мг/мл в том же буфере. Сорбент инкубировали при температуре 22°С в течение 1.5 часов. Образовавшиеся иминные связи восстанавливали раствором боргидрида натрия в воде с концентрацией 1 мг/мл в течение часа при температуре иммобилизации. Расчет количества иммобилизованного фермента проводили так же, как описано в Примере 1. Масса иммобилизованной рибонуклеазы составила 0.9±0.1 мг.

Процесс деструкции РНК проводили по следующей программе элюирования: (1) 0-2 мин - 100% элюента А; (2) 2-7 мин - 100% элюента Б; (3) 7-17 мин от 0 до 100% элюента В. Состав элюентов и остальные параметры процесса аналогичны таковым, приведенным в Примере 1. Фиг. 4 иллюстрирует профиль элюции набора олигорибонуклеотидов, образующихся при деструкции РНК. Доля РНК, не подвергшаяся деструкции, составила 8±2%.

Пример 3. Для проведения процесса использовали сорбенты, описанные в Примере 1. При этом деструкцию РНК проводили, используя в качестве модели многокомпонентной биологической жидкости смесь РНК, ДНК и сывороточного альбумина человека (ЧСА). На фиг.5 представлен профиль элюции данной смеси из колонки 2, т.е. не включающий стадию деструкции целевого компонента.

Для проведения процесса деструкции РНК в сорбент вносили 300 мкл указанной смеси, где концентрация каждого компонента составляла 0.15 мг/мл в 0.02 M буферном растворе трис(гидроксиметил)аминометана, рН 7.5. Далее процесс проводили так же, как описано в Примере 1. На фиг.6 представлен профиль элюции компонентов смеси биологических соединений, включающий как набор олигорибонуклеотидов, образовавшихся в результате деструкции РНК, так и исходные компоненты - ДНК и сывороточный альбумин человека. Доля РНК, не подвергшаяся деструкции, составила 10+4%. Очевидно, что присутствие дополнительных биологических компонентов не мешает протеканию процесса биоконверсии РНК.

Таким образом, вследствие использования на обеих стадиях процесса макропористых полимерных сорбентов монолитного типа описанный способ позволяет одновременно проводить деструкцию РНК и мониторинг продуктов реакции за короткий промежуток времени, при высоких скоростях подвижной фазы и низких рабочих давлениях с эффективностью, сопоставимой с биокаталитической реакцией в растворе. Использование способа иммобилизации фермента через полимерный спейсер позволяет сократить объем сорбента, используемого на первой стадии, при сохранении эффективности процесса биодеструкции.


СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
СПОСОБ ДЕСТРУКЦИИ РИБОНУКЛЕИНОВЫХ КИСЛОТ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 51.
20.11.2015
№216.013.9170

Трубчатый имплантат органов человека и животных и способ его получения

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или...
Тип: Изобретение
Номер охранного документа: 0002568848
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.965e

Способ получения водорастворимых полимерных комплексов радиоизотопов

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер...
Тип: Изобретение
Номер охранного документа: 0002570114
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3ab5

Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения

Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД). Изобретение заключается во введении СОД в пористые кальций карбонатные (CaCO) ядра методом соосаждения...
Тип: Изобретение
Номер охранного документа: 0002583923
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3ae5

Способ получения биосовместимого органо-неорганического композита на основе целлюлозы gluconacetobacter xylinus и гидроксиапатита

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002583925
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cea

Фотолюминесцентный полимерный композиционный материал для светоизлучающих систем

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или...
Тип: Изобретение
Номер охранного документа: 0002583267
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4855

Способ получения антистатического полипропиленового волокна с улучшенными механическими свойствами

Изобретение относится к способу получения антистатического полипропиленового волокна с улучшенными механическими свойствами, которое может быть использовано в машиностроении, химической, электротехнической и легкой промышленности. Сущность способа заключается в том, что экструдированные из...
Тип: Изобретение
Номер охранного документа: 0002585667
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.526a

Способ получения водорастворимых сополимеров n-виниламидов, содержащих альдегидные группы

Изобретение относится к способу получения водорастворимых сополимеров N-виниламидов, содержащих альдегидные группы, путем радикальной сополимеризации N-винилпирролидона или N-метил-N-винилацетамида с непредельным мономером, содержащим защищенную альдегидную группу, с последующим удалением...
Тип: Изобретение
Номер охранного документа: 0002594253
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.589f

Способ получения синтетических металл-полимерных комплексов радиоизотопа галлия-68

Изобретение относится к области химии высокомолекулярных соединений и ядерной медицины, а именно к способу получения синтетических металл-полимерных комплексов радиоизотопов галлия-68. Комплекс включает водорастворимый сополимер N-винилпирролидона с аллил- или N-виниламином с молекулярной...
Тип: Изобретение
Номер охранного документа: 0002588144
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.818e

Способ получения микрокапсулированной формы терапевтического пептида для перорального применения

Изобретение относится к фармацевтической промышленности, а именно к способу получения микрокапсулированной формы терапевтического пептида для перорального применения. Способ заключается во введении ундекапептида U2 в оболочки спор ликоподия (ОЛ) и дальнейшем формировании альгинатных микрокапсул...
Тип: Изобретение
Номер охранного документа: 0002601898
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.892f

Способ получения радиофармпрепаратов класса поли-n-виниламидов с металлами группы марганца

Изобретение относится к способу получения радиофармпрепаратов класса поли-N-виниламидов с металлами подгруппы марганца. Способ включает синтез полимера-носителя радиоизотопов, содержащего аминогруппы, и выполнение процесса радиомечения. В качестве полимера-носителя используют водорастворимый...
Тип: Изобретение
Номер охранного документа: 0002602502
Дата охранного документа: 20.11.2016
Показаны записи 21-30 из 46.
10.06.2015
№216.013.526b

Полимерные кетиминовые производные антибиотика доксициклина

Изобретение относится к химии биологически активных полимеров, конкретно к полимерным кетиминовым производным доксициклина, которые получают путем конденсации гидрохлорида доксициклина с катионными сополимерами акриламида с 2-амимноэтилметакрилатом (ММ=16-20 кДа), при молярном соотношении...
Тип: Изобретение
Номер охранного документа: 0002552620
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.8398

Концентрированный состав для обработки семян и посадочного материала растений против бактериальных и грибковых болезней

Изобретение относится к концентрированным составам для защиты растений от бактериальных и грибковых болезней путем предпосевной обработки семян и посадочного материала растений. Состав содержит компоненты в следующих соотношениях, мас.%: фурацилин - 0,45-0,9, катапол - 0,45-0,9,...
Тип: Изобретение
Номер охранного документа: 0002565291
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9170

Трубчатый имплантат органов человека и животных и способ его получения

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или...
Тип: Изобретение
Номер охранного документа: 0002568848
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.965e

Способ получения водорастворимых полимерных комплексов радиоизотопов

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер...
Тип: Изобретение
Номер охранного документа: 0002570114
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3ab5

Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения

Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД). Изобретение заключается во введении СОД в пористые кальций карбонатные (CaCO) ядра методом соосаждения...
Тип: Изобретение
Номер охранного документа: 0002583923
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3ae5

Способ получения биосовместимого органо-неорганического композита на основе целлюлозы gluconacetobacter xylinus и гидроксиапатита

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002583925
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cea

Фотолюминесцентный полимерный композиционный материал для светоизлучающих систем

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или...
Тип: Изобретение
Номер охранного документа: 0002583267
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4855

Способ получения антистатического полипропиленового волокна с улучшенными механическими свойствами

Изобретение относится к способу получения антистатического полипропиленового волокна с улучшенными механическими свойствами, которое может быть использовано в машиностроении, химической, электротехнической и легкой промышленности. Сущность способа заключается в том, что экструдированные из...
Тип: Изобретение
Номер охранного документа: 0002585667
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.526a

Способ получения водорастворимых сополимеров n-виниламидов, содержащих альдегидные группы

Изобретение относится к способу получения водорастворимых сополимеров N-виниламидов, содержащих альдегидные группы, путем радикальной сополимеризации N-винилпирролидона или N-метил-N-винилацетамида с непредельным мономером, содержащим защищенную альдегидную группу, с последующим удалением...
Тип: Изобретение
Номер охранного документа: 0002594253
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.589f

Способ получения синтетических металл-полимерных комплексов радиоизотопа галлия-68

Изобретение относится к области химии высокомолекулярных соединений и ядерной медицины, а именно к способу получения синтетических металл-полимерных комплексов радиоизотопов галлия-68. Комплекс включает водорастворимый сополимер N-винилпирролидона с аллил- или N-виниламином с молекулярной...
Тип: Изобретение
Номер охранного документа: 0002588144
Дата охранного документа: 27.06.2016
+ добавить свой РИД