×
10.05.2015
216.013.4994

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ И МИКРОЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм по отношению к поверхности обрабатываемого объекта, при соотношении T:Ж не менее 0,001 кг/л. Техническим результатом является возможность повышения степени очистки от радионуклидов и микроэлементов загрязненных объектов радиохимической промышленности. 1 табл.
Основные результаты: Способ извлечения радионуклидов и микроэлементов, включающий контактирование с сорбентом на основе цианоферрата переходного металла, отличающийся тем, что контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм по отношению к поверхности обрабатываемого объекта, при соотношении T:Ж не менее 0,001 кг/л.

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств.

Известен способ извлечения радионуклидов из водных растворов в динамическом режиме с помощью композиционного неорганического сорбента, содержащего немагнитную фракцию продукта переработки металлургического шлака, имеющего следующий состав: силикат кальция Ca2SiO4; оксид железа-лития Li0,28Fe21/34O32; коэзит SiO2; железистый гроссуляр Ca3Al1,332Fe0,668Si3O12; рингвудит Fe2SiO4; алюмосиликат натрия Na14,88Al15,26Si32,74O96; при этом процесс осуществляют при начальном значении pH не менее 2 и конечном значении pH не более 14 (патент RU 2330340, МПК G21F 9/12, 2008 год).

Недостатками известного способа являются недостаточно высокая степень очистки от радионуклидов сбросных водных растворов радиохимических производств, а также недостаточно широкий спектр сорбируемых элементов.

Известен способ очистки от радионуклидов водной технологической среды атомных производств путем фильтрации воды через гранулированную загрузку ферроцианидсодержащего сорбента, содержащего 0,2-2 масс.% гидразина; 35-48 масс.% воды и 20-35 масс.% ферроцианида никеля состава Me(I)4-2x[NixFe(CN)6, где Me(I)-Li+, Na+, K+, NH4+ или их смесь; остальное - гидроксид циркония (патент RU 2399974, МПК G21F 9/12, 2010 год) (прототип).

К недостаткам известного способа относятся возможность его применения только для очистки радионуклидов цезия, а также недостаточно высокая степень очистки (1,9·104-5,8·105).

Таким образом, перед авторами стояла задача разработать способ извлечения радионуклидов и микроэлементов как из жидких, так и из твердых объектов радиохимических производств, обеспечивающий широкий спектр извлекаемых элементов наряду с высокой степенью их извлечения.

Поставленная задача решена в способе извлечения радионуклидов и микроэлементов, включающем контактирование с сорбентом на основе цианоферрата переходного металла, в котором контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л.

В настоящее время из патентной и научно-технической литературы не известен способ извлечения радионуклидов и микроэлементов из загрязненных твердых и жидких объектов радиохимических производств с использованием сорбента в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л, при соотношении Тсорб:Ж не менее 0,001 кг/л.

Проведенные авторами исследования позволили установить, что использование суспензии порошка цианоферрата переходного металла в растворе гуминовой кислоты приводит к одновременному сорбционному извлечению не только ионов цезия и стронция, но также дополнительно большого числа ионов других микроэлементов - часто находящихся в радиоактивных отходах в результате попадания туда продуктов деления и активации (Co, Mn, Fe, Zr, Nb, U, Th, Y, La, РЗМ).

В основе предлагаемого технического решения лежит обнаруженное авторами усиление сорбционной специфичности (сродства) цианоферратов переходных металлов к катионам s-, p-, d- и f-элементов на уровне микроконцентраций под действием гуминовой кислоты. Это объясняется тем, что в присутствии гуминовой кислоты коэффициент распределения Kd (мг/г) указанных микроэлементов по отношению к цианоферратам переходных металлов возрастает на 1-3 порядка по величине вследствие того, что микроэлементы сорбируются не в виде простых аква-ионов, а в виде комплексов с гуминовой кислотой. Причем сама гуминовая кислота практически не сорбируется цианоферратом переходного металла. Здесь проявляется особенность гуминовой кислоты как представителя природных органических многофункциональных соединений: являясь комплексообразователем для всех ионов химических элементов в водных растворах, гуминовая кислота тем не менее не подавляет (как большинство известных лигандов), а усиливает сорбционное сродство образуемых комплексов с цианоферратами.

Экспериментальным путем авторами установлены количественные пределы содержания гуминовой кислоты, обеспечивающие увеличение коэффициента распределения. Так, при снижении содержания гуминовой кислоты менее 0,15 г/л наблюдается снижение коэффициента распределения, что обусловлено подавлением комплексообразования микроэлементов с гуминовой кислотой и, как следствие, подавлением их сорбции. При повышении содержания гуминовой кислоты более 0,25 г/л также наблюдается снижение коэффициента распределения, что обусловлено образованием особопрочных комплексов микроэлементов с димерной формой гуминовой кислоты, что подавляет их сорбцию.

На фиг.1 отображена зависимость коэффициента распределения (Kd) при сорбции микроэлементов Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Sr, Zr, Cs, Ce, Nd, Th, U из пробы речной воды Белоярского водохранилища (Свердловская область) порошком берлинской лазури Fe4[Fe(CN)6]3 со средним размером частиц 200 мкм в зависимости от концентрации гуминовой кислоты в воде (pH=7,6; 23°C; масса сорбента - 0,20 г; объем раствора - 300 мл).

Предлагаемый способ может быть осуществлен следующим образом. Готовят суспензию путем добавления в раствор гуминовой кислоты с концентрацией 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта цианоферрата переходного металла в количестве, обеспечивающем соотношение Тсорб:Ж не менее 0,001 кг/л. Затем приводят в контакт с обрабатываемым объектом: выливают в обрабатываемый раствор или приводят в контакт с поверхностью обрабатываемого объекта. Предлагаемое техническое решение может быть реализовано в замкнутом объеме (статика сорбции в реакторе) или в проточной системе (динамика сорбции в фильтрационной колонке). В первом случае в реактор с очищаемым раствором вносят суспензию предлагаемого состава, после перемешивания дают выдержку для осаждения осадка, очищенный раствор с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.

Во втором случае в трубопровод с очищаемым раствором подают суспензию, содержащую гуминовую кислоту и цианоферрат переходного металла. Раствор, перемешиваемый с суспензией, подают на вход колонки с фильтром из порошка того же самого цианоферрата переходного металла. В результате пропускания через фильтр раствора фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок с фильтра колонки направляют на сушку и кондиционирование для последующего захоронения.

Предлагаемый способ может быть использован для десорбции радионуклидов и микроэлементов с поверхности твердых объектов, например, со стен реактора. В этом случае очищаемую поверхность приводят в контакт с суспензией, содержащей гуминовую кислоту и цианоферрат переходного металла. После обработки поверхности суспензию сливают и пропускают через колонку с фильтрующим дном. Фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки, сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.

Предлагаемый способ относится к "зеленой химии", поскольку гуминовые кислоты являются природно-совместимыми химическими веществами, способными к включению в естественные биохимические реакции в почвах и гидрологических системах. Именно поэтому фильтраты с остатками гуминовой кислоты можно перемещать непосредственно в окружающую среду, например, выливать в грунт или речную воду.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 45 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Разбавление этого объема в пробе соответствует концентрации 0,15 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Тсорб:Ж=4,4:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке по анализу состава отделенного раствора методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):

,

где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.

Пример 2. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 75 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Вводят этот объем гуминовой кислоты в пробу речной воды, что соответствует концентрации 0,25 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Tсорб:Ж=2,7:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):

,

где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.

В таблице представлены сравнительные коэффициенты распределения Kd, полученные при использовании предлагаемого способа и способа-прототипа.

Таблица
Элементы Kd (предлагаемый способ) Kd (способ- прототип) Kd (предлагаемый способ)
Kd(прототип) отн. едн.
Li 80 <1 >80
Be 4500 <1 >4500
Mg 2200 300 7
Al 11000 370 30
Si 2500 <1 >2500
Ca 2400 500 5
Sc 1900 <1 >1900
Ti 4000 <1 >4000
V 38000 <1 >38000
Cr 11000 <1 >11000
Mn 19000 7000 3
Co 4100 120 34
Ni 7700 100 77
Sr 4700 <60 >70
Y 4500 <1 >4500
Zr 5200 <1 >5200
Cs 4200000 5800000 0,7
Ba 29100 <10 >2900
Ce 30000 <10 >3000
Nd 30500 <10 >3000
Th 31000 <10 >3100
U 7700 1500 5

Таким образом, предлагаемый способ позволяет значительно увеличить степень очистки от радионуклидов и микроэлементов загрязненные объекты радиохимической промышленности.

Способ извлечения радионуклидов и микроэлементов, включающий контактирование с сорбентом на основе цианоферрата переходного металла, отличающийся тем, что контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм по отношению к поверхности обрабатываемого объекта, при соотношении T:Ж не менее 0,001 кг/л.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 119.
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bde2

Способ экстракционного разделения редкоземельных металлов из азотнокислых растворов

Изобретение может быть использовано для разделения редкоземельных металлов РЗМ и получения церия и сопутствующих ему других редкоземельных металлов. Способ разделения РЗМ из растворов включает получение азотнокислых растворов РЗМ растворением карбонатов РЗМ в азотной кислоте, экстракцию...
Тип: Изобретение
Номер охранного документа: 0002576763
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.caef

Способ переработки жидких радиоактивных отходов и их утилизации

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) для максимального сокращения их объемов и удаления радионуклидов с концентрированием их в твердой фазе. Заявленный способ включает окисление отходов, отделение от жидкой фазы шламов, коллоидов и взвешенных частиц...
Тип: Изобретение
Номер охранного документа: 0002577512
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
Показаны записи 21-30 из 65.
10.11.2015
№216.013.8b87

Способ получения коллоидного раствора наночастиц сульфида свинца

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002567326
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bde2

Способ экстракционного разделения редкоземельных металлов из азотнокислых растворов

Изобретение может быть использовано для разделения редкоземельных металлов РЗМ и получения церия и сопутствующих ему других редкоземельных металлов. Способ разделения РЗМ из растворов включает получение азотнокислых растворов РЗМ растворением карбонатов РЗМ в азотной кислоте, экстракцию...
Тип: Изобретение
Номер охранного документа: 0002576763
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.caef

Способ переработки жидких радиоактивных отходов и их утилизации

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) для максимального сокращения их объемов и удаления радионуклидов с концентрированием их в твердой фазе. Заявленный способ включает окисление отходов, отделение от жидкой фазы шламов, коллоидов и взвешенных частиц...
Тип: Изобретение
Номер охранного документа: 0002577512
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
+ добавить свой РИД