×
27.04.2015
216.013.4768

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА ДЕТАЛИ ИЗ БЕЗУГЛЕРОДИСТОГО ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к формированию на деталях из безуглеродистых жаропрочных никелевых сплавов химико-термической обработкой комбинированных покрытий для защиты от газовой коррозии в условиях высоких температур (выше 900°С), и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности. Способ получения покрытия на детали из безуглеродистого жаропрочного никелевого сплава включает нанесение первого покрытия на наружную поверхность детали и нанесение на поверхность первого покрытия второго покрытия на основе алюминия. Первое покрытие содержит в мас.%: хром 4-25, алюминий 2-12, тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, иттрий 0,001-5,0 и никель - остальное. Первое покрытие наносят конденсационным методом, а второе покрытие наносят диффузионным или конденсационным методами. Обеспечивается снижение трудоемкости и повышение долговечности детали.
Основные результаты: Способ получения покрытия на детали из безуглеродистого жаропрочного никелевого сплава, включающий нанесение первого покрытия на поверхность детали и нанесение на поверхность первого покрытия второго покрытия на основе алюминия, отличающийся тем, что первое покрытие, содержащее в мас.%: хром 4-25, алюминий 2-12, тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, иттрий 0,001-5,0 и никель - остальное, на наружную поверхность детали наносят конденсационным методом, а второе покрытие наносят диффузионным или конденсационным методами.

Изобретение относится к металлургии, в частности к формированию на деталях из безуглеродистых жаропрочных никелевых сплавов химико-термической обработкой комбинированных покрытий для защиты от газовой коррозии в условиях высоких температур (от 900°C), и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых жаропрочных никелевых сплавов.

К безуглеродистым жаропрочным никелевым сплавам относят сплавы с содержанием углерода не более 0,05% (А.В. Логунов. Тенденции разработки и применения Ni-суперсплавов для лопаток ГТД в современных и перспективных силовых установках авиационного назначения // Технологии легких сплавов, №4, 2011 г., с.11-17).

С одной стороны, применение данных сплавов для деталей, работающих в условиях повышенной температуры, позволяет повысить температуру на поверхности детали (изделия), в частности, использование данных сплавов для турбинных лопаток газотурбинных двигателей позволяет повысить температуру рабочего газа перед турбиной и, как следствие, снизить удельную массу двигателя и удельный расход топлива при одновременном увеличении удельной тяги, а с другой стороны, особенности элементного состава безуглеродистых жаропрочных сплавов на никелевой основе приводят при воздействии высоких температур (выше 900°C) к формированию в поверхностном слое детали под покрытием на основе алюминия, так называемой вторичной реакционной зоны (ВРЗ), содержащей ТПУ-фазы, снижающие характеристики жаропрочности сплавов и долговечности изготавливаемых из них деталей. В связи с этим, на поверхности деталей (изделий) формируют барьерные покрытия, снижающие интенсивность образования ВРЗ (С.А. Мубояджян и др. Высокотемпературные жаростойкие покрытия и жаростойкие слои для теплозащитных покрытий. Авиационные материалы и технологии, №1, 2013, 17-20 с.).

Известен способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля, включающий насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости лопатки порошковой смесью или газовой средой, нагрева и выдержки лопатки с заполненной внутренней полостью и последующее нанесение диффузионного алюминидного покрытия (см. патент RU №2349678, кл. С23С 10/48, опубл. 27.10.2008).

Несмотря на то, что покрытие, полученное данным способом, позволяет эффективно защитить только внутреннюю полость детали от высокотемпературного окисления, отсутствие защиты от высокотемпературного окисления внешней (наружной) поверхности детали не позволяет обеспечить высокую долговечность лопаток во время работы двигателя. Кроме того, процесс насыщения поверхности углеродом в газовой среде с углеродсодержащим газом, например метаном, отличается низкой стабильностью, сопровождается неизбежным окислением поверхности, формированием слоя пиролитического графита в виде сажи, который предотвращает насыщение углеродом. Также, данный способ достаточно трудоемок из-за многочисленных операций, включающих подготовку поверхности к насыщению (обработка поверхности водной суспензией, содержащей электрокорунд, промывка полости водой под давлением до полного удаления электрокорунда, сушка и пр.).

Технический результат заявленного изобретения - снижение трудоемкости и повышение долговечности детали.

Указанный технический результат достигается тем, что в способе получения покрытия на детали из безуглеродистого жаропрочного никелевого сплава, включающем нанесение первого покрытия на поверхность детали и нанесение на поверхность первого покрытия второго покрытия на основе алюминия, согласно изобретению, первое покрытие, содержащее, мас.%: хром 4-25; алюминий 2-12; тантал 0,2-20; вольфрам 0,5-9,0; кобальт 8-10; гафний 0,2-3,0; кремний 0,1-5,0; углерод 0,1-0,4; иттрий 0,001-5,0; никель - остальное до 100%, наносят конденсационным методом на наружную поверхность детали, а второе покрытие наносят диффузионным или конденсационным методами.

Основное назначение хрома в составе первого барьерного покрытия состоит в формировании карбидов в барьерном покрытии, которые тормозят диффузию элементов на границе сплав-покрытие и обеспечивают необходимую жаростойкость при сравнительно невысоком содержании алюминия. С этой целью содержание хрома в сплаве должно быть не менее 4%. Такое содержание хрома обеспечивает достаточно высокие барьерные свойства покрытия, прежде всего на безуглеродистых никелевых сплавах, предотвращает рассасывание покрытия и формирование ТПУ-фаз при высокотемпературном окислении. В то же время содержание хрома не должно быть выше 25%, так как при более высоком содержании хрома возрастает вероятность образования хрупкой σ-фазы и снижается сопротивление покрытия высокотемпературному окислению.

Алюминий, образуя упрочняющую γ'-фазу, обеспечивает хорошую жаростойкость покрытия при высоких температурах газовой среды. Содержание алюминия должно быть в мас.% 2-12. При выходе за верхнюю границу предложенного диапазона (более 12%) ухудшается технологичность покрытия: возрастает количество хрупкой β-фазы в структуре покрытия, снижается адгезия, увеличивается пористость. При содержании алюминия менее 2% существенно снижается жаростойкость покрытия. В конечном итоге наблюдается снижение защитных свойств покрытия и ухудшение характеристик его долговечности.

Тантал обеспечивает увеличение прочности и жаропрочности покрытия путем увеличения прочности атомных связей в структуре покрытия, образует карбиды и тормозит диффузионные процессы на границе сплав-покрытие, тем самым стабилизирует структуру покрытия и подавляет склонность безуглеродистых никелевых сплавов к формированию ВРЗ, содержащей нежелательные ТПУ-фазы. Кроме того, тантал повышает сопротивление покрытия высокотемпературному окислению. Содержание тантала менее 0,2% недостаточно для заметного улучшения свойств покрытия, так как он, в основном, содержится в твердом растворе, и сопротивление окислению повышается незначительно. Содержание тантала выше 20% приводит к образованию хрупких фаз в структуре покрытия, ухудшающих его долговечность.

Вольфрам вводят с целью формирования карбидов вольфрама, тормозящих диффузию элементов на границе покрытия со сплавом, снижения температуры перехода покрытия из хрупкого в пластичное состояние при нагреве. Вольфрам содержится в покрытии в карбидах и во вторичных твердых растворах. Содержание вольфрама должно быть в мас.% 0,5-9,0. При содержании вольфрама менее 0,5% не отмечается заметного улучшения свойств покрытия, а при увеличении его концентрации более 9% возможно образование ТПУ-фаз типа и, наличие которых отрицательно сказывается на долговечности покрытия.

Кобальт вводят для повышения пластичности и трещиностойкости. При содержании кобальта менее 8% и более 10% ухудшается жаропрочность покрытия.

Гафний, иттрий и кремний обеспечивают улучшение адгезии защитной оксидной пленки к поверхности покрытия. Усиление защитных свойств оксидной пленки достигается при введении гафния не менее 0,2% и кремния не менее 0,1%. При содержании гафния более 3% и кремния более 5% наблюдается образование ТПУ-фаз, ухудшающих характеристики долговечности покрытия. Положительный эффект от введения иттрия наблюдается при содержании иттрия в количестве не менее 0,001%. Иттрий в количествах больших чем 5% вводить нецелесообразно, так как это может заметно снижать сопротивление высокотемпературному окислению.

Углерод вводят для формирования карбидов, образующих барьерный слой на границе между покрытием и поверхностью детали. Основными карбидными фазами, входящими в состав барьерной зоны, являются карбиды типа МеС, Ме23С6, Me3Cr2, Ме6С, где Me - Cr, W, Та, Hf. Наличие карбидов тормозит взаимную диффузию элементов сплава и покрытия, что предотвращает тем самым образование ВРЗ в защищаемом сплаве, содержащей охрупчивающие ТПУ-фазы. При высоком содержании углерода (более 0,4%) происходит нежелательное снижение температуры солидус сплава, а при малом содержании (менее 0,1%) барьерный слой оказывается недостаточно эффективным.

Никель, как основа покрытия, выбран с целью обеспечения формирования слоя тугоплавких алюминидов никеля, обеспечивающих покрытие запасом алюминия, достаточным для надежной защиты изделия от высокотемпературного окисления в течение заданного ресурса.

Способ реализуется следующим образом. В качестве примера выбран способ формирования покрытия на рабочей лопатке турбины авиационного газотурбинного двигателя. Однако данный способ может быть применен, например, и для створок реактивного сопла газотурбинного двигателя.

На деталь - лопатку, отлитую из сплава, содержащего, мас.%; хром 6,1; кобальт 7,4; молибден 0,8; вольфрам 12; алюминий 5,1; титан 1,8; ниобий 1,1; углерод 0,006, никель - остальное до 100%, наносят конденсационным методом (напылением) первое (внутреннее) покрытие на основе никеля следующего состава, мас.%: хром 20,3; вольфрам 8,4; тантал 6,2; алюминий 10,8; углерод 0,34; гафний 2,1; кобальт 9,5; кремний 2,4; иттрий 3,0; никель - остальное до 100%. Толщина нанесенного покрытия составляет 0,070-0,075 мм. Получают покрытие со структурой, состоящей из легированного γ-твердого раствора на никелевой основе, упрочняющей γ'-фазы и карбидов. Структура покрытия мелкозернистая. Функция данного покрытия - создать барьерный слой, снижающий интенсивность процесса формирования ВРЗ или предотвращающий процесс формирования ВРЗ на границе сплава с покрытием.

После нанесения первого покрытия можно проводить термическую обработку - отжиг или старение. В этом случае термическую обработку покрытия проводят в вакууме путем нагрева лопаток до температуры 1050°C, выдержки в течение 2 ч, охлаждения до 870°C, выдержки в течение 16 часов и охлаждения. Возможны, в зависимости от требований, предъявляемых к прочностным характеристикам защищаемых деталей, варианты: термическую обработку проводят в диапазоне температур от 850 до 1100°C в течение от 1 до 16 часов.

Затем на данное (первое) покрытие наносят второе покрытие на основе алюминия путем алитирования газовым методом в среде хлоридов AlCl3, AlCl2, AlCl при температуре 1000°C в течение 6 ч. Затем выполняют термическую обработку - отжиг - при температуре 1050°C в течение 4 ч. В результате получают комбинированное покрытие, состоящее из двух покрытий: наружное (второе), состоящее из зерен β- и γ'-фаз, и внутреннее (первое), состоящее из карбидных частиц, распределенных в объеме β- и γ'-фаз. Суммарная толщина комбинированного покрытия составляет 0,085-0,090 мм.

Испытаниями образцов на жаростойкость при температуре 1050°C в течение 850 ч установлено, что структура комбинированного покрытия изменилась незначительно, а под покрытием ВРЗ, содержащая ТПУ-фазы, отсутствовала.

Покрытие на основе алюминия можно наносить не только алитированием, но и другими известными методами: шликерным методом, конденсацией сплавов для покрытий или хромоалитированием. Покрытия на основе алюминия являются также известными (см., например, П.Т. Коломыцев. Жаростойкие диффузионные покрытия. - М.: Металлургия, 1979 г.). Так, например, для алюмосилицирования шликерным методом используют состав, содержащий, мас.%: кремний 6; алюминий 94, при этом термическую обработку-отжиг осуществляют при температуре 1000°C в течение 3 ч.

Первое (внутреннее) и второе (наружное) покрытия наносят последовательно.

Способ получения покрытия на детали из безуглеродистого жаропрочного никелевого сплава, включающий нанесение первого покрытия на поверхность детали и нанесение на поверхность первого покрытия второго покрытия на основе алюминия, отличающийся тем, что первое покрытие, содержащее в мас.%: хром 4-25, алюминий 2-12, тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, иттрий 0,001-5,0 и никель - остальное, на наружную поверхность детали наносят конденсационным методом, а второе покрытие наносят диффузионным или конденсационным методами.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 34.
10.11.2015
№216.013.8e36

Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя

Изобретение относится к энергетике. Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя, включающий заполнение дозированным топливом как минимум одного топливного коллектора камеры сгорания и подачу через его форсунки топлива в камеру сгорания двигателя. В процессе...
Тип: Изобретение
Номер охранного документа: 0002568015
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9467

Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава

Изобретение относится к металлургии, в частности к составам для получения карбидного барьерного слоя в алюминийсодержащем покрытии, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых сплавов...
Тип: Изобретение
Номер охранного документа: 0002569610
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.97c7

Способ оценки стойкости к образованию горячих трещин тонколистовых жаропрочных материалов

Изобретение относится к сварочному производству и может быть использовано для определения стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм. Изготавливают образцы из исследуемых материалов...
Тип: Изобретение
Номер охранного документа: 0002570475
Дата охранного документа: 10.12.2015
20.02.2016
№216.014.cf22

Способ индукционной закалки зубчатого колеса

Изобретение относится к области технологии машиностроения и может быть использовано при упрочняющей термообработке зубчатых колес. Для обеспечения высокого качества термообработки и расширения технологических возможностей способ включает последовательный нагрев индуктором локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002575262
Дата охранного документа: 20.02.2016
10.06.2016
№216.015.46eb

Способ восстановления бандажных полок лопаток турбомашин из титановых сплавов

Изобретение может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из титановых сплавов. С поврежденных участков удаляют покрытие и поверхностный слой металла, например, алмазным шлифованием. Осуществляют наплавку поврежденных участков...
Тип: Изобретение
Номер охранного документа: 0002586191
Дата охранного документа: 10.06.2016
26.08.2017
№217.015.e87d

Способ восстановления бандажных полок лопаток компрессора газотурбинных двигателей (гтд)

Изобретение относится к способу восстановления бандажных полок лопаток компрессора газотурбинных двигателей (ГТД). Определяют линии ремонтного среза бандажных полок. Удаляют по указанной линии их дефектные части. Изготавливают накладки из твердосплавного материала толщиной не более 0,9 мм со...
Тип: Изобретение
Номер охранного документа: 0002627558
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec22

Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Изобретение относится к технологиям и оборудованию для нанесения покрытий на детали при их химико-термической обработке. Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей включает формирование на внутренних...
Тип: Изобретение
Номер охранного документа: 0002628309
Дата охранного документа: 17.08.2017
13.02.2018
№218.016.1f29

Способ нанесения износостойкого покрытия на бандажную полку лопатки турбомашин из никелевых сплавов

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной...
Тип: Изобретение
Номер охранного документа: 0002641210
Дата охранного документа: 16.01.2018
11.03.2019
№219.016.dbd9

Устройство для одновременного питания электрофизических аппаратов высоким постоянным и частотно-импульсным напряжением субмикросекундного диапазона (варианты)

Изобретение относится к технике высоких напряжений, а именно к устройствам высоковольтного питания электрофизических аппаратов высоким постоянным и частотно-импульсным напряжением субмикросекундного диапазона. Технический результат - повышение энергетической эффективности, увеличение частотного...
Тип: Изобретение
Номер охранного документа: 0002453022
Дата охранного документа: 10.06.2012
18.05.2019
№219.017.5b56

Способ химико-термической обработки деталей из никелевых сплавов

Изобретение относится к металлургии, в частности к разделу химико-термической обработки деталей. Проводят насыщение деталей кобальтом и хромом в циркулирующей галогенидной среде с соотношением кобальта и хрома 20-85 мас.% и 15-80 мас.% соответственно при температуре >900°С и не выше температуры...
Тип: Изобретение
Номер охранного документа: 0002462535
Дата охранного документа: 27.09.2012
Показаны записи 21-30 из 41.
10.11.2015
№216.013.8e36

Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя

Изобретение относится к энергетике. Способ заполнения топливных коллекторов камер сгорания газотурбинного двигателя, включающий заполнение дозированным топливом как минимум одного топливного коллектора камеры сгорания и подачу через его форсунки топлива в камеру сгорания двигателя. В процессе...
Тип: Изобретение
Номер охранного документа: 0002568015
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9467

Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава

Изобретение относится к металлургии, в частности к составам для получения карбидного барьерного слоя в алюминийсодержащем покрытии, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых сплавов...
Тип: Изобретение
Номер охранного документа: 0002569610
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.97c7

Способ оценки стойкости к образованию горячих трещин тонколистовых жаропрочных материалов

Изобретение относится к сварочному производству и может быть использовано для определения стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм. Изготавливают образцы из исследуемых материалов...
Тип: Изобретение
Номер охранного документа: 0002570475
Дата охранного документа: 10.12.2015
20.02.2016
№216.014.cf22

Способ индукционной закалки зубчатого колеса

Изобретение относится к области технологии машиностроения и может быть использовано при упрочняющей термообработке зубчатых колес. Для обеспечения высокого качества термообработки и расширения технологических возможностей способ включает последовательный нагрев индуктором локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002575262
Дата охранного документа: 20.02.2016
10.06.2016
№216.015.46eb

Способ восстановления бандажных полок лопаток турбомашин из титановых сплавов

Изобретение может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из титановых сплавов. С поврежденных участков удаляют покрытие и поверхностный слой металла, например, алмазным шлифованием. Осуществляют наплавку поврежденных участков...
Тип: Изобретение
Номер охранного документа: 0002586191
Дата охранного документа: 10.06.2016
26.08.2017
№217.015.e87d

Способ восстановления бандажных полок лопаток компрессора газотурбинных двигателей (гтд)

Изобретение относится к способу восстановления бандажных полок лопаток компрессора газотурбинных двигателей (ГТД). Определяют линии ремонтного среза бандажных полок. Удаляют по указанной линии их дефектные части. Изготавливают накладки из твердосплавного материала толщиной не более 0,9 мм со...
Тип: Изобретение
Номер охранного документа: 0002627558
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec22

Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Изобретение относится к технологиям и оборудованию для нанесения покрытий на детали при их химико-термической обработке. Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей включает формирование на внутренних...
Тип: Изобретение
Номер охранного документа: 0002628309
Дата охранного документа: 17.08.2017
13.02.2018
№218.016.1f29

Способ нанесения износостойкого покрытия на бандажную полку лопатки турбомашин из никелевых сплавов

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной...
Тип: Изобретение
Номер охранного документа: 0002641210
Дата охранного документа: 16.01.2018
16.09.2018
№218.016.884d

Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов

Изобретение относится к области сварки и наплавки и может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из жаропрочных никелевых сплавов. Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002667110
Дата охранного документа: 14.09.2018
22.09.2018
№218.016.88ba

Способ получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов

Изобретение относится к способу получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов. Способ включает вакуумно-плазменное осаждение легирующих элементов хрома, алюминия и иттрия на поверхность лопаток и термическую обработку. Легирующие элементы наносят первым...
Тип: Изобретение
Номер охранного документа: 0002667191
Дата охранного документа: 17.09.2018
+ добавить свой РИД