27.04.2015
216.013.465f

СПОСОБ И УСТРОЙСТВО ДЛЯ СЖАТИЯ И ВОССТАНОВЛЕНИЯ СИГНАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области цифровой обработки сигналов. Технический результат заключается в увеличении коэффициента сжатия сигнала. В способе сжатия и восстановления сигналов, основанном на представлении сигналов линейной комбинацией экспонент, включающем дискретизацию сигнала, накопление кадра дискретных отсчетов, выделение колебательных составляющих сигнала и вычисление параметров колебаний, по которым сигнал восстанавливают, число колебательных составляющих ограничивают составляющими, дисперсия которых превышает заранее установленное значение, и в зависимости от этого числа изменяют длительность кадра данных. 2 н.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области цифровой обработки сигналов и информационно-измерительной техники и может быть использовано для анализа, сжатия-восстановления, выделения и измерения параметров информативных колебательных составляющих сигналов в системах телеметрии, телеуправления и многоканальных системах сбора и обработки данных.

Известны и широко применяются способы и реализующие их устройства для цифрового сжатия и восстановления сигналов, основанные на полиноминальной, сплайновой и Фурье-аппроксимации сигналов [1, 2, 3, 4] и последующей интерполяции данных. Их основным недостатком является низкая точность, особенно для знакопеременных сигналов, и значительное влияние на получаемые результаты случайных шумов, неизбежно наложенных на сигнал. Известны также способы и реализующие их устройства, основанные на представлении выборочных данных в виде конечной линейной комбинации экспонент (колебаний, характеризуемых амплитудами, начальными фазами, частотами и коэффициентами затухания), параметры которых рассчитываются по методу наименьших квадратов Прони [5, 6]. Их недостатком является высокая трудоемкость и продолжительность расчетов, обусловленные необходимостью решения систем из большого числа уравнений и характеристического уравнения высокого порядка, что препятствует реализации способов на микроконтроллерах и использованию в составе мобильных систем реального времени.

Из известных наиболее близким по технической сущности является способ, основанный на представлении сигналов линейной комбинацией экспонент, включающий дискретизацию сигнала, выделение его колебательных составляющих и расчет их параметров, по которым затем сигнал восстанавливают (Применение разложения по эмпирическим модам в задачах цифровой обработки сигналов / Мясникова Н.В., Долгих Л.А., Мясникова М.Г // Датчики и системы - №5, 2011, с.8-10).

Известный способ-прототип реализует следующую последовательность действий.

1. Непрерывный сигнал x(t) дискретизируют с постоянным шагом Т.

2. Формируют кадр данных, накапливая N дискретных значений сигнала, причем N задают исходя из времени, необходимого для расчета параметров максимально возможного для данного типа сигнала числа колебательных составляющих.

3. Выделяют из N отсчетов колебательные составляющие.

4. Рассчитывают параметры колебательных составляющих сигнала.

5. Переходят к обработке следующего кадра данных.

6. Восстанавливают по полученным значениям параметров колебательных составляющих кадры исходного сигнала.

Недостатком известного способа является малый коэффициент сжатия K=N/4n, где n - число колебательных составляющих сигнала. Обусловлено это тем, что увеличение числа одновременно обрабатываемых отсчетов сигнала N и числа его колебательных составляющих n приводит к возрастанию продолжительности расчета параметров колебательных составляющих с использованием процедуры Прони. Число одновременно обрабатываемых отсчетов сигнала N выбирается из условия, чтобы время завершения сжатия кадра данных не превышало время формирования следующего кадра N отсчетов сигнала.

Целью предлагаемого способа является увеличение коэффициента сжатия сигнала.

Указанная цель достигается тем, что в способе сжатия и восстановления сигналов, основанном на представлении сигналов линейной комбинацией экспонент, включающем дискретизацию сигнала, накопление кадра дискретных отсчетов, выделение колебательных составляющих сигнала и вычисление параметров колебательных составляющих, по которым сигнал восстанавливают, число колебательных составляющих ограничивают составляющими, дисперсия которых превышает заранее установленное значение, и в зависимости от этого числа изменяют длительность кадра данных.

Заявленный способ реализует следующую последовательность действий.

1. Непрерывный сигнал x(t) дискретизируют с постоянным шагом Т, то есть представляют его дискретными отсчетами x[1], x[2], …, x[i], …, где x[i]=x[(i-1)T], i - порядковый номер отсчета.

2. Формируют кадр данных, накапливая N дискретных отсчетов, причем N задают в зависимости от числа колебательных составляющих, полученного в процессе обработки предшествующего кадра данных.

3. Выделяют из N отсчетов колебательные составляющие.

4. Рассчитывают дисперсию выделяемых колебательных составляющих.

5. Сравнивают значение дисперсии колебательных составляющих с значением, определяемым предельно допустимой погрешностью сжатия-восстановления сигнала.

6. Выделяют колебательные составляющие, дисперсия которых больше предельно допустимой погрешности сжатия-восстановления сигнала.

7. Рассчитывают параметры выделенных колебательных составляющих сигнала.

8. Число выделенных колебательных составляющих используют для задания N дискретных значений сигнала в следующем кадре данных и для управления расчетом параметров колебаний.

9. Переходят к обработке следующего кадра данных.

10. Восстанавливают по полученным значениям параметров колебательных составляющих кадры исходного сигнала.

Для выделения колебательных составляющих может быть использовано, например, разложение сигнала на эмпирические моды или экстремальная фильтрация данных.

При использовании разложения на эмпирические моды реализуется следующая последовательность действий:

1. Выделяют экстремумы сигнала

{Mn}, n=1, 2, 3 …; {mn}, n=1, 2, 3 …,

где {Mn} и {mn} - набор максимумов и минимумов соответственно.

2. По максимумам на основе сплайн-интерполяции строят верхнюю огибающую M(i)=fM(Mn, i), а по минимумам - нижнюю огибающую m(i)=fm(mn, i).

3. Формируют скользящее среднее значение огибающих

е(i)=0,5[m(i)+M(i)].

4. Формируют из исходной последовательности отсчетов колебательную составляющую (моду) (не рассматриваем случай, когда кандидат в моды - не мода, т.к. за счет итерационной процедуры повторным построением огибающих кандидата на моду и вычитанием среднего)

h(i)=x(i)-e(i).

5. Повторяют для скользящего среднего значения e(i) пункты 1-4 как hn(i)=en-1(i)-en(i), где n - порядковый номер колебательной составляющей и среднего значения огибающих.

При использовании экстремальной фильтрации реализуется следующая последовательность действий.

1. Выделяют экстремумы сигнала {хЭn}, n=1, 2, 3 ….

2. Формируют скользящее среднее значение экстремумов вычислением среднего между средним значением текущего и предыдущего экстремумов и средним значением текущего и последующего экстремумов

3. Формируют колебательную составляющую

4. Повторяют для скользящего среднего значения экстремумов e(i) пункты 1-3.

Для расчета параметров выделенных колебательных составляющих, например, может быть применен метод наименьших квадратов Прони, использующий модель второго порядка p=2, или параметры могут быть рассчитаны непосредственно по значениям колебательной составляющей.

При использовании метода наименьших квадратов Прони реализуется следующая последовательность действий:

1. Составляют по методу наименьших квадратов систему двух уравнений

из решения которой находят коэффициенты авторегрессии а 1 и а 2.

2. Подставляют значения коэффициентов авторегрессии а 1 и а 2 в характеристическое уравнение второго порядка

и находят его комплексно сопряженные корни z1 и z 2.

3. Минимизируя сумму квадратов ошибок по каждому параметру hk, составляют вторую систему двух уравнений и вычисляют ее комплексно сопряженные корни h1 и h2:

4. Рассчитывают параметры колебаний частоты

коэффициенты затухания амплитуды

амплитуды

и начальные фазы

Непосредственно по значениям колебательной составляющей могут быть определены амплитуда и начальная фаза, частоту находят по числу экстремумов колебательной составляющей в единицу времени, а коэффициенты затухания определяют как логарифм изменения значений экстремумов колебательной составляющей.

Технический результат - увеличение коэффициента сжатия достигается за счет ограничения числа выделяемых колебательных составляющих предельно допустимым значением их дисперсии и изменением количества дискретных отсчетов сигнала в кадре данных в зависимости от числа колебательных составляющих. С уменьшением числа колебательных составляющих продолжительность их выделения и расчета параметров колебательных составляющих уменьшается и может быть восстановлена до требуемого значения, при котором время сжатия кадра данных примерно равно времени формирования следующего кадра, за счет увеличения числа отсчетов сигнала в кадре данных.

Технический результат достигается также за счет применения нового устройства для реализации заявленного способа сжатия и восстановления сигналов, содержащего последовательно соединенные аналого-цифровой преобразователь, запоминающее устройство, блок выделения колебательных составляющих, блок вычисления параметров колебаний и блок восстановления сигнала, причем выход блока выделения колебательных составляющих дополнительно соединен через блок ограничения числа колебательных составляющих с управляющими входами запоминающего устройства, блока выделения колебательных составляющих и блока вычисления параметров колебаний.

На фиг. 1 приведена функциональная схема устройства, реализующего заявляемый способ сжатия и восстановления сигналов. На фиг. 2 приведен пример реализации блока выделения колебательных составляющих сигнала 3, а на фиг. 3 - блока вычисления параметров колебательных составляющих 4.

Устройство для сжатия и восстановления сигналов содержит последовательно соединенные аналого-цифровой преобразователь 1, запоминающее устройство 2, блок выделения колебательных составляющих сигнала 3, блок вычисления параметров колебательных составляющих 4 и блок восстановления сигнала 5, а также блок ограничения числа колебательных составляющих 6, вход которого подключен к выходу блока выделения колебательных составляющих сигнала 3, а выход - к управляющим входам запоминающего устройства 2, блока выделения колебательных составляющих сигнала 3 и блока вычисления параметров колебательных составляющих 4.

Все элементы, входящие в состав устройства, могут быть реализованы в виде отдельных функциональных узлов, например, на программируемых логических интегральных схемах (ПЛИС) или программным способом при использовании микроконтроллеров, оснащенных цифроаналоговым и аналого-цифровым преобразователями.

Блок выделения колебательных составляющих сигнала 3 (фиг. 2) при использовании разложения на эмпирические моды содержит узел формирования колебательных составляющих 7, узел выделения экстремумов 8, узлы формирования верхней и нижней огибающих соответственно 9 и 10 и узел формирования текущего среднего значения 11. Узел формирования колебательных составляющих 7 по информационному входу подключен к запоминающему устройству 2, а по входу управления - к выходу блока ограничения числа колебательных составляющих 6. Выход узла формирования колебательных составляющих 7 соединен с входами узлов формирования верхней и нижней огибающих соответственно 9 и 10, выходы которых подключены ко входам узла формирования текущего среднего значения 11. Выход узла формирования текущего среднего значения 11 соединен с входом узла формирования колебательных составляющих 7 и входами блока вычисления параметров колебательных составляющих 4 и блока ограничения числа колебательных составляющих 6.

Блок вычисления параметров колебательных составляющих 4 при использовании метода наименьших квадратов Прони содержит узел вычисления коэффициентов авторегрессии 12, узел вычисления корней характеристического уравнения 13 и узел решения системы уравнений 14. Информационные входы узла вычисления коэффициентов авторегрессии 12 и узла решения системы уравнений 14 подключены к выходу блока выделения колебательных составляющих сигнала 3, а их управляющие входы соединены с выходом блока ограничения числа колебательных составляющих 6. Выход узла вычисления коэффициентов авторегрессии 12 соединен через узел вычисления корней характеристического уравнения 13 со вторым входом узла решения системы уравнений 14. Выходы узла вычисления корней характеристического уравнения 13 и узла решения системы уравнений 14 соединены через канал передачи сжатых данных с входом блока восстановления сигнала 5.

Работает устройство для цифрового сжатия и восстановления сигналов следующим образом. Аналого-цифровой преобразователь 1 осуществляет дискретизацию с шагом Т и квантование непрерывного входного сигнала x(t), преобразуя его в последовательность цифровых отсчетов х[1], …, x[i]. В запоминающем устройстве 2 накапливаются N дискретных значений сигнала, формируя кадр данных. При формировании первого кадра данных число N задано конструктивно. В дальнейшем оно изменяется по команде блока ограничения числа колебательных составляющих 6 в зависимости от числа колебательных составляющих, выделенных при обработке предшествующего кадра данных. Блок выделения колебательных составляющих сигнала 3 производит разложение сигнала в пределах накопленного кадра данных на колебательные составляющие одним из возможных методов.

Например, при использовании разложения на эмпирические моды N дискретных значений сигнала передаются в узел формирования колебательных составляющих 7. Узел выделения экстремумов 8 фиксирует экстремальные значения {Mn}, n=1, 2, 3 …; {mn}, n=1, 2, 3 …, которые используются для формирования по максимумам верхней огибающей M(i)=fM(Mn, i) в узле формирования верхней огибающей 9 и формирования по минимумам нижней огибающей m(i)=fm(mn, i) в узле формирования нижней огибающей 10. Скользящее среднее значение огибающих e(i) формируется как среднее между значениями верхней и нижней огибающих e(i)=0,5[m(i)+M(i)] в узле формирования текущего среднего значения 11. В узле формирования колебательных составляющих 7 выделяются колебательные составляющие как разность между предыдущим и текущим скользящими средними значениями hn(i)=en-1(i)-en(i). В блоке ограничения числа колебательных составляющих 6 производится расчет дисперсии выделяемых колебательных составляющих. Колебательные составляющие, дисперсия которых превышает значение, задаваемое предельно допустимой погрешностью сжатия-восстановления сигнала, передаются для расчета их параметров в блок вычисления параметров колебательных составляющих 4. Число выделенных колебательных составляющих фиксируется и используется для задания числа N дискретных отсчетов в запоминающем устройстве 2 при формировании следующего кадра данных. Значение числа отсчетов в кадре данных N также передается в блок выделения колебательных составляющих сигнала 3 и в блок вычисления параметров колебательных составляющих 4 для организации вычислений при заданном числе отсчетов в кадре данных.

При использовании экстремальной фильтрации колебательная составляющая hn(i) формируется в блоке выделения колебательных составляющих сигнала 3 непосредственно по экстремумам в соответствии с формулой (2), а скользящее среднее значение экстремумов формируют в соответствии с выражением (1).

В блоке вычисления параметров колебательных составляющих 4 осуществляется расчет частот, коэффициентов затухания амплитуды, амплитуд и начальных фаз каждой из выделенных колебательных составляющих. Например, при использовании для этих целей метода наименьших квадратов Прони в узле вычисления коэффициентов авторегрессии 12 из решения системы двух уравнений (3) находят коэффициенты авторегрессии а 1 и а 2, которые затем используют в характеристическом уравнении (4).

В узле вычисления корней характеристического уравнения 13 находят решение характеристического уравнения (4) и по формулам (6) и (7) рассчитывают частоту f и коэффициент затухания α колебательной составляющей. Значения корней характеристического уравнения совместно с отсчетами колебательной составляющей используются также для формирования и решения системы двух уравнений (5) в узле решения системы уравнений 14. По корням системы уравнений (5) с использованием формул (8) и (9) рассчитывают значения амплитуд А и начальных фаз θ колебательных составляющих.

Полученные значения f, α, А и θ для всех выделенных колебательных составляющих описывают сжимаемый сигнал по кадрам данных. Они передаются через канал связи. В блоке восстановления сигнала 5 полученные значения параметров колебаний используются для синтеза с помощью цифроаналогового преобразования колебаний, которые после суммирования их мгновенных значений формируют восстановленный сигнал x(t).

Использованные источники

1. Айфичер, Эммануил С., Джервис, Барри У. Цифровая обработка сигналов. - М.: Вильяме. 2004. - 992 с.

2. Попов Б.А., Теслер Г.С. Вычисление функций на ЭВМ. Справочник. - Киев: Наукова думка, 1984. - 600 с.

3. Патент RU №94028881 от 20.06.1996.

4. Патент RU №2099720 от 20.12.1997.

5. Марпл - мл. С.Л. Цифровой спектральный анализ и его приложения: Пер. с англ. - М.: Мир, 1990. - 584 с.

6. Патент RU №2472287 от 10.01.2013.

7. Применение разложения по эмпирическим модам в задачах цифровой обработки сигналов / Мясникова Н.В., Долгих Л.А., Мясникова М.Г. // Датчики и системы - №5, 2011, С.8-10.


СПОСОБ И УСТРОЙСТВО ДЛЯ СЖАТИЯ И ВОССТАНОВЛЕНИЯ СИГНАЛОВ
СПОСОБ И УСТРОЙСТВО ДЛЯ СЖАТИЯ И ВОССТАНОВЛЕНИЯ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 71.
10.01.2013
№216.012.19eb

Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем. Сущность: разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости системы датчика при одновременном...
Тип: Изобретение
Номер охранного документа: 0002472127
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8b

Способ и устройство для цифрового сжатия и восстановления сигналов

Изобретение относится к области цифровой обработки сигналов и информационно-измерительной техники и может быть использовано для анализа, сжатия-восстановления и выделения информативных колебательных компонент сигналов в системах телеметрии, телеуправления и многоканальных системах сбора и...
Тип: Изобретение
Номер охранного документа: 0002472287
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2115

Способ охраны периметра объекта

Способ может быть использован для охраны периметра различных объектов, таких как крупные заводы, атомные электростанции, частные предприятия, склады со взрывоопасными и химическими веществами, а также для охраны частных территорий, особняков и других объектов различной категории. Технический...
Тип: Изобретение
Номер охранного документа: 0002473970
Дата охранного документа: 27.01.2013
27.10.2013
№216.012.7b77

Электропривод шаговый

Изобретение относится к области электротехники и может быть использовано в шаговом электроприводе, в котором не шаговый электродвигатель работает в шаговом режиме и расположен на некотором расстоянии от источника управляющего напряжения. Техническим результатом является упрощение схемы...
Тип: Изобретение
Номер охранного документа: 0002497269
Дата охранного документа: 27.10.2013
20.05.2014
№216.012.c80e

Способ определения литогенности желчи

Изобретение относится к медицине и может быть использовано для определения оптимальных сроков дренирования желчных протоков у больных с патологией билиарного тракта различной этиологии. Описан способ определения литогенности желчи, заключающийся в определении ее физико-химических свойств, при...
Тип: Изобретение
Номер охранного документа: 0002516973
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d74c

Способ получения пористых отливок

Изобретение относится к литейному производству. Водорастворимый наполнитель нагревают в печи и засыпают в нагретую металлическую форму. После заливки металла в форму осуществляется пропитка наполнителя расплавом под действием центробежных сил. Частота вращения формы определяется по формуле ,...
Тип: Изобретение
Номер охранного документа: 0002520894
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dd26

Способ выделения начала реполяризации желудочков сердца

Изобретение относится к медицине, в частности к электрокардиографии. Непрерывный электрокардиосигнал (ЭКС) фильтруют, представляют в виде дискретных отсчетов. После чего сглаживают путем усреднения амплитуд соседних отсчетов электрокардиосигнала. Затем выделяют R-R интервал и кардиоцикл,...
Тип: Изобретение
Номер охранного документа: 0002522392
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e3d7

Штамм бактерий lactobacillus acidophilus используемый для приготовления кисломолочного продукта

Изобретение относится к биотехнологии. Штамм Lactobacillus acidophilus №9-ПС обладает биохимической активностью и высокой кислотностью. Штамм депонирован в Ведомственной коллекции полезных микроорганизмов сельскохозяйственного назначения Россельхозакадемии (RCAM) под регистрационным номером...
Тип: Изобретение
Номер охранного документа: 0002524117
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.ef68

Способ получения покрытий

Изобретение относится к области обработки поверхностей стальных деталей и может быть использовано в машиностроении и других отраслях промышленности. Способ включает оксидирование деталей в безыскровом режиме в кислом растворе, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4...
Тип: Изобретение
Номер охранного документа: 0002527107
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f723

Газодинамическое устройство для огнестрельного оружия

Газодинамическое устройство для огнестрельного оружия содержит корпус, в котором в передней части смонтирована подпружиненная герметизирующая трубка и дополнительные рабочие элементы - шторки, оси которых имеют возможность вращения в отверстиях, выполненных в корпусе. В задней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002529104
Дата охранного документа: 27.09.2014
Показаны записи 1-10 из 87.
10.01.2013
№216.012.1903

Способ получения покрытий на поверхностях глухих отверстий деталей из алюминиевых сплавов

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других отраслях промышленности. Способ включает электрохимическое оксидирование деталей с глухими отверстиями, которое осуществляют в течение 30-100 минут, при этом раствор, в котором...
Тип: Изобретение
Номер охранного документа: 0002471895
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19eb

Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем. Сущность: разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости системы датчика при одновременном...
Тип: Изобретение
Номер охранного документа: 0002472127
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a05

Способ прогнозирования риска отторжения трансплантата при ксенопластике

Изобретение относится к медицине, а именно к хирургии, и может быть применено для оценки степени риска отторжения ксеноперикардиальной пластины при трансплантации ее в переднюю брюшную стенку. Сущность способа: на 7-10 сутки после операции важно определиться с прогнозом и дальнейшей тактикой -...
Тип: Изобретение
Номер охранного документа: 0002472153
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8b

Способ и устройство для цифрового сжатия и восстановления сигналов

Изобретение относится к области цифровой обработки сигналов и информационно-измерительной техники и может быть использовано для анализа, сжатия-восстановления и выделения информативных колебательных компонент сигналов в системах телеметрии, телеуправления и многоканальных системах сбора и...
Тип: Изобретение
Номер охранного документа: 0002472287
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2115

Способ охраны периметра объекта

Способ может быть использован для охраны периметра различных объектов, таких как крупные заводы, атомные электростанции, частные предприятия, склады со взрывоопасными и химическими веществами, а также для охраны частных территорий, особняков и других объектов различной категории. Технический...
Тип: Изобретение
Номер охранного документа: 0002473970
Дата охранного документа: 27.01.2013
20.07.2013
№216.012.5757

Щавелевокислый электролит для осаждения сплава медь-олово

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитно-декоративных покрытий. Электролит для нанесения сплава медь-олово содержит компоненты при следующем соотношении, г/л: сульфат меди пяти-водный 20-25, сульфат олова 3-10, аммоний щавелевокислый 45-55,...
Тип: Изобретение
Номер охранного документа: 0002487967
Дата охранного документа: 20.07.2013
27.08.2013
№216.012.63fb

Способ утилизации отработанных растворов, содержащих соединения шестивалентного хрома

Изобретение может быть использовано для взаимной очистки отработанных растворов предприятий, имеющих хромсодержащие сточные воды, и сточных вод, содержащих отходы производства антибиотиков. Для осуществления способа к хромсодержащим отработанным растворам в технологической емкости добавляют...
Тип: Изобретение
Номер охранного документа: 0002491232
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.651c

Способ измерения цвета в произвольной системе координат

Изобретение относится к измерительным устройствам для определения координат цвета и может использоваться для контроля цветовых характеристик. Способ измерения координат цвета включает освещение исследуемого образца, корректировку относительной спектральной чувствительности многоэлементного...
Тип: Изобретение
Номер охранного документа: 0002491521
Дата охранного документа: 27.08.2013
20.09.2013
№216.012.6c10

Способ строительства и укрепления автомобильных дорог

Способ строительства и укрепления автомобильных дорог относится к области дорожного строительства и может быть использовано при проектировании, строительстве, реконструкции и ремонте дорог. Технический результат: расширение эксплуатационных возможностей за счет укрепления тела дорог и дорожной...
Тип: Изобретение
Номер охранного документа: 0002493315
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c52

Устройство для глушения шума двигателя

Изобретение относится к области автомобилестроения и предназначено для снижения уровня шума. Сущность изобретения: устройство для глушения шума двигателя содержит корпус, впускной и выпускной патрубки. В корпусе смонтированы вертикальный и горизонтальный рассекатели, вертикальная продольная...
Тип: Изобретение
Номер охранного документа: 0002493381
Дата охранного документа: 20.09.2013

Похожие РИД в системе