×
10.04.2015
216.013.3dee

ОПТИЧЕСКАЯ СИСТЕМА ЛАЗЕРНОГО КОМПРЕССОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к лазерной технике. Оптическая система лазерного компрессора для лазерных установок с широкой апертурой лазерного пучка основана на паре параллельных дифракционных решеток с одинаковым периодом дополненной, по крайней мере, одной парой параллельных дифракционных решеток с одинаковым периодом. Вдоль оптической оси по направлению распространения лазерного излучения пары параллельных дифракционных решеток расположены таким образом, что лазерное излучение сначала последовательно проходит первые решетки всех пар дифракционных решеток, начиная с первой пары решеток, а затем последовательно вторые решетки всех пар дифракционных решеток, начиная с последней пары решеток, причем различные пары дифракционных решеток ориентированы относительно друг друга под разными углами, выбранными в зависимости от максимального габаритного размера, оптических характеристик применяемых дифракционных решеток и параметров лазерного излучения. Технический результат заключается в обеспечении требуемой групповой дисперсии заданного широкоапертурного пучка светового излучения. 1 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области квантовой электроники, а именно к лазерной технике, и может быть использовано для решения технических задач, где требуется обеспечение сжатия (компрессии) высокоэнергетичных чирпированных широкоапертурных лазерных импульсов наносекундной и субнаносекундной длительности до первоначальной длительности, в частности, в современных лазерных установках, предназначенных для исследований в области управляемого термоядерного синтеза и взаимодействия светового излучения с веществом.

В настоящее время практически во всех лазерных системах, генерирующих импульсы сверхмощного излучения, используется метод CPA (chirped-pulse amplification), усиления растянутых до нескольких наносекунд ультракоротких импульсов и последующего их сжатия до исходной длительности [Strickland D., Mourou G. Opt. Commun., 56, 219 (1985)]. В традиционных CPA-системах с прямым усилением, а также в системах, основанных на параметрическом усилении чирпированных импульсов ОРСРА (optical parametric CPA) [Dubietis A., Butkus R., Piskarskas A.P. IEEE J. Sel. Top.Quantum Electron., 12, 163 (2006)], для сжатия чирпированного лазерного импульса применяются лазерные компрессоры на одной паре параллельных дифракционных решеток [Treacy Edmond В. IEEE J. Quantum Electron., 5, 454 (1969)], обеспечивающие отрицательную дисперсию групповой скорости (длинные волны задерживаются относительно коротких), а также для растяжения импульса светового излучения стретчеры на антипараллельных решетках с переворачивающим изображение телескопом [Martinez О.Е. IEEE J. Quantum Electron., 23, 59 (1987)], обеспечивающие положительную групповую дисперсию.

Известна оптическая система лазерного компрессора на одной паре параллельных дифракционных решеток [Treacy Edmond В., «Optical Pulse Compression With Diffraction Gratings», IEEE Journal of Quantum Electronics, vol.5, pp.454, 1969]. В данной системе для осуществления компрессии импульса светового излучения используется пара параллельных дифракционных решеток, стоящих под углом к лазерному пучку. Угол падения на первую дифракционную решетку относительно нормали выбирается вблизи (~±10°) угла Литрова дифракционной решетки, чтобы обеспечить высокий коэффициент отражения ≈92-95%. Для лазерного излучения с центральной длиной волны 1053 нм угол падения на первую дифракционную решетку составляет ≈55-75°. Использование такой оптической схемы для достижения требуемой групповой дисперсии приводит к необходимости увеличения размеров дифракционных решеток вследствие увеличения размеров светового пучка и большого угла падения, что технологически осложнено. В настоящее время габаритный размер доступных дифракционных решеток составляет ≈500×400 мм (Ш×В).

Техническим результатом изобретения является обеспечение требуемой групповой дисперсии заданного широкоапертурного пучка светового излучения в технологически приемлемых габаритах дифракционных решеток лазерного компрессора.

Данный технический результат достигается тем, что в отличие от известной оптической системы лазерного компрессора, основанной на паре параллельных дифракционных решеток с одинаковым периодом, в предложенной системе вышеназванная пара дифракционных решеток дополнена, по крайней мере, одной парой параллельных дифракционных решеток с одинаковым периодом, причем вдоль оптической оси по направлению распространения лазерного излучения пары параллельных дифракционных решеток расположены таким образом, что лазерное излучение сначала последовательно проходит первые решетки всех пар дифракционных решеток, начиная с первой по ходу луча пары решеток, а затем последовательно вторые решетки всех пар дифракционных решеток, начиная с последней пары решеток, причем различные пары дифракционных решеток ориентированы относительно друг друга под разными углами, выбранными в зависимости от характеристик лазерного излучения, максимального габаритного размера применяемых дифракционных решеток, их периода и оптических характеристик и от требуемой дисперсии групповой скорости лазерного излучения на выходе оптической системы.

Оптическая система лазерного компрессора может отличаться тем, что период дифракционных решеток в разных парах одинаковый или различный.

Принцип действия лазерного компрессора на двух параллельных дифракционных решетках впервые описан в статье «Optical Pulse Compression With Diffraction Gratings» Treacy Edmond В., IEEE Journal of Quantum Electronics, vol.5, pp.454, 1969, базовые положения которой лежат в основе реализации заявляемой системы. Расчет спектральной фазы, дисперсии второго порядка и дисперсии более высоких порядков описывается в обзорной статье «High power ultrafast lasers», S.Backus, C.G.Durfee, M.M.Murnane and H.C.Kapteyn, Review of Scientific Instruments, Vol.69, No.3, 1998, pp.1207-1223. В статье показано, что групповая задержка, она же дисперсия групповой скорости, она же дисперсия второго порядка, равна τ=P/с, где P - разность оптических путей длинноволновых и коротковолновых компонент импульса, с - скорость света. Параметр P зависит от разности двух длин волн (ширина спектра импульса), от количества штрихов на мм дифракционной решетки, от угла падения пучка относительно нормали на первую решетку и от расстояния между дифракционными решетками по нормали.

Из формулы дисперсии групповой скорости видно, что она не зависит от диаметра падающего на первую решетку пучка. Из геометрии схемы прототипа видно, что размер первой дифракционной решетки зависит прямо пропорционально от диаметра падающего пучка и обратно пропорционально косинусу угла падения относительно нормали. При обеспечении требуемой дисперсии в прототипе размер дифракционной решетки возрастает как с увеличением диаметра падающего пучка, так и с увеличением угла падения.

В предлагаемой системе в результате использования заявляемых признаков разница оптических путей Р накапливается на каждой дифракционной решетке, которых в предлагаемой оптической схеме больше, чем в прототипе. И из-за того, что они специфично расположены по ходу прохождения луча, появляется возможность более гибко получать требуемую дисперсию групповой скорости в отличие от прототипа, т.к. она накапливается на каждой дифракционной решетке. В результате размещения пар дифракционных решеток относительно друг друга под различными углами можно уменьшить углы падения лазерного излучения на дифракционные решетки с сохранением требуемой дисперсии групповой скорости на выходе из предлагаемой оптической системы лазерного компрессора, тем самым уменьшив размер используемых дифракционных решеток. В прототипе значительно уменьшить угол падения нельзя, так как сильно уменьшится дисперсия групповой скорости, и ее не хватит до требуемого значения. Для обеспечения требуемой дисперсии групповой скорости в прототипе рабочий угол падения составляет ≈60-70°, а в предлагаемой системе ≈30-40°.

Выбор периодов дифракционных решеток в разных парах (одинаковый или различный) дополнительно позволит влиять (увеличивать или уменьшать) на достижение заданной дисперсии.

Предлагаемая оптическая система при увеличении количества решеток позволяет, на лазерных установках с широкой апертурой лазерного пучка, использовать дифракционные решетки меньшего размера по сравнению со схемой на двух параллельных дифракционных решетках при одной и той же требуемой дисперсии групповой скорости лазерного излучения на выходе из соответствующей оптической системы.

На чертеже изображена принципиальная схема предлагаемой оптической системы, где 1-1', 2-2', 3-3' - три пары параллельных дифракционных решеток, α - угол между 1-й и 2-й парой решеток, β - угол между 2-й и 3-й парой решеток, М - отражающее возвратное зеркало.

Ниже будем использовать следующие обозначения:

1 - первая решетка первой пары параллельных дифракционных решеток, 1' - вторая решетка первой пары параллельных дифракционных решеток, 2 - первая решетка второй пары параллельных дифракционных решеток, 2' - вторая решетка второй пары параллельных дифракционных решеток, 3 - первая решетка третьей пары параллельных дифракционных решеток, 3' - вторая решетка третьей пары параллельных дифракционных решеток.

Покажем, каким образом достигается указанный выше технический результат.

Лазерный компрессор, реализованный в предлагаемой оптической системе (чертеж), построен на основе трех пар параллельных дифракционных решеток 1-1', 2-2', 3-3'. Причем расположение решеток в реальной системе таково, что последовательное прохождение луча в системе соответствует следующему порядку прохождения дифракционных решеток 1-2-3-3'-2'-1'. Для компенсации поперечного сдвига частот также, как и в прототипе, применен возвратный отражатель М. Отражатель М направляет излучение обратно через дифракционные решетки в горизонтальной плоскости, а в вертикальной немного смещает его относительно первоначального направления распространения излучения для того, чтобы на выходе оптического компрессора можно было разделить входное и выходное лазерное излучение. Таким образом, использование отражателя М позволяет использовать дифракционные решетки два раза, если позволяет их габаритная высота. Вместо отражателя М можно использовать идентичную оптическую систему лазерного компрессора, но зеркально отраженную. Тогда дифракционные решетки используются один раз, что позволяет пропускать через систему лазерный пучок большего размера.

В оптической системе, изображенной на чертеже, более длинноволновые компоненты λ1 лазерного импульса проходят более длинные пути, чем короткие λ2, и, следовательно, одни относительно других приобретают задержку во времени.

Лазерный компрессор, реализованный в предлагаемой оптической системе (чертеж), имеет следующие параметры:

- дисперсия групповой скорости на выходе τ=1,59×10-9 cек;

- одинаковые периоды дифракционных решеток во всех парах, d=0,833×10-6 м;

- центральная длина волны лазерного излучения λ=1053×10-9 м;

- спектральная ширина Δλ=2×10-9 м;

- угол падения на первую решетку α=30°;

- диаметр падающего пучка светового (лазерного) излучения пучка D=0,4 м.

Лазерный компрессор, реализованный по оптической системе прототипа, имеет параметры:

- дисперсия групповой скорости на выходе τ=1,58×10-9 сек;

- периоды обеих параллельных дифракционных решеток одинаковые d=0,575×10-6 м;

- центральная длина волны лазерного излучения λ=1053×10-9 м;

- спектральная ширина Δλ=2×10-9 м;

- угол падения на первую решетку α=60°;

- диаметр падающего лазерного пучка D=0,4 м.

Если применить предлагаемую оптическую систему, можно использовать дифракционные решетки с максимальной шириной 55 см, вместо 93 см, используемых в схеме прототипа, и тем самым уменьшить габариты применяемых дифракционных решеток в системе на 40%, как заявлено в результате.


ОПТИЧЕСКАЯ СИСТЕМА ЛАЗЕРНОГО КОМПРЕССОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 58.
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afce

Контейнер для транспортирования отработавшего ядерного топлива

Изобретение относится к контейнерам для транспортирования и временного хранения отработавшего ядерного топлива (ОЯТ) атомных электростанций (АЭС) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер содержит металлический корпус, включающий комингс с закрепленными на нем днищем и...
Тип: Изобретение
Номер охранного документа: 0002510721
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b5fa

Способ получения раствора ферроцианида лития

Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu, Ni, Co, Zn, Fe и др.) общей формулы Ме[Fe(CN)]. Способ получения раствора ферроцианида лития заключается в использовании сильнокислого...
Тип: Изобретение
Номер охранного документа: 0002512310
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.ba17

Траверса перегрузочная захватная изделия

Изобретение относится к подъемно-транспортному оборудованию. Траверса перегрузочная содержит сварную П-образную раму, состоящую из верхней балки, двух боковых секций, с отсеками, с размещенными в них винтовыми механизмами, захватные цапфы. Траверса дополнительно содержит опорные цапфы в нижней...
Тип: Изобретение
Номер охранного документа: 0002513367
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c098

Способ получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования и радиографический комплекс для его осуществления

Использование: для получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования. Сущность изобретения заключается в том, что при получении радиографического изображения быстропротекающих процессов в неоднородном объекте исследований выполняют...
Тип: Изобретение
Номер охранного документа: 0002515053
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c141

Устройство и способы:настройки магнитной системы формирования пучка протонов в объектной плоскости протонографического комплекса, согласования магнитной индукции магнитооптической системы формирования изображения и контроля настройки многокадровой системы регистрации протонных изображений

Изобретение относится к области регистрации изображений, сформированных с помощью пучка протонов, и может быть использовано при исследовании объектов с помощью радиографических методов. Устройство для настройки магнитооптической системы формирования пучка протонов состоит из импульсного...
Тип: Изобретение
Номер охранного документа: 0002515222
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c1c2

Установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве

Изобретение относится к механическим и теплофизическим испытаниям и может быть использовано в процессе испытаний токопроводящих материалов. Заявлена установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая рабочую вакуумную...
Тип: Изобретение
Номер охранного документа: 0002515351
Дата охранного документа: 10.05.2014
Показаны записи 1-10 из 55.
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afce

Контейнер для транспортирования отработавшего ядерного топлива

Изобретение относится к контейнерам для транспортирования и временного хранения отработавшего ядерного топлива (ОЯТ) атомных электростанций (АЭС) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер содержит металлический корпус, включающий комингс с закрепленными на нем днищем и...
Тип: Изобретение
Номер охранного документа: 0002510721
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b5fa

Способ получения раствора ферроцианида лития

Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu, Ni, Co, Zn, Fe и др.) общей формулы Ме[Fe(CN)]. Способ получения раствора ферроцианида лития заключается в использовании сильнокислого...
Тип: Изобретение
Номер охранного документа: 0002512310
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.ba17

Траверса перегрузочная захватная изделия

Изобретение относится к подъемно-транспортному оборудованию. Траверса перегрузочная содержит сварную П-образную раму, состоящую из верхней балки, двух боковых секций, с отсеками, с размещенными в них винтовыми механизмами, захватные цапфы. Траверса дополнительно содержит опорные цапфы в нижней...
Тип: Изобретение
Номер охранного документа: 0002513367
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c098

Способ получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования и радиографический комплекс для его осуществления

Использование: для получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования. Сущность изобретения заключается в том, что при получении радиографического изображения быстропротекающих процессов в неоднородном объекте исследований выполняют...
Тип: Изобретение
Номер охранного документа: 0002515053
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c141

Устройство и способы:настройки магнитной системы формирования пучка протонов в объектной плоскости протонографического комплекса, согласования магнитной индукции магнитооптической системы формирования изображения и контроля настройки многокадровой системы регистрации протонных изображений

Изобретение относится к области регистрации изображений, сформированных с помощью пучка протонов, и может быть использовано при исследовании объектов с помощью радиографических методов. Устройство для настройки магнитооптической системы формирования пучка протонов состоит из импульсного...
Тип: Изобретение
Номер охранного документа: 0002515222
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c1c2

Установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве

Изобретение относится к механическим и теплофизическим испытаниям и может быть использовано в процессе испытаний токопроводящих материалов. Заявлена установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая рабочую вакуумную...
Тип: Изобретение
Номер охранного документа: 0002515351
Дата охранного документа: 10.05.2014
+ добавить свой РИД