10.04.2014
216.012.b5fa

СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ФЕРРОЦИАНИДА ЛИТИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu, Ni, Co, Zn, Fe и др.) общей формулы Ме[Fe(CN)]. Способ получения раствора ферроцианида лития заключается в использовании сильнокислого катионита, который из Н-формы переводят в Li-форму, а затем через него пропускают раствор ферроцианида щелочного металла. В качестве сильнокислого катионита используют катионит КУ-2-8 в Н-форме. Изобретение позволяет получать чистые растворы ферроцианида лития различной концентрации, упростить технологию и уменьшить время получения готового продукта. 5 з.п. ф-лы, 3 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области химической технологии, а именно к получению новых химических соединений, в частности ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов.

При синтезе нормальных ферроцианидов переходных металлов (Cu2+, Ni2+, Со2+, Zn2+, Fe3+ и др.) чаще всего используются ферроцианиды легких металлов (Li+, Na+), аммония, иногда кальция. Наиболее пригоден для этой цели ферроцианид лития, поскольку ион лития имеет наименьший радиус (0,78 Å) и обладает наименьшей тенденцией к внедрению в осадок нормального ферроцианида (Г.Б.Сойфер, З.А.Макарова, Ж.Н.Х. Том IX, вып.12, с.2782, 1964 г.). При использовании ферроцианида калия чаще всего образуются смешанные ферроцианиды из-за склонности нормальных ферроцианидов присоединять молекулы ферроцианида щелочного металла, например:

Cu2[Fe(CN)6]+K4[Fe(CN)6]=2K2Cu[Fe(CN)6].

В случае Ni2+ нормальный ферроцианид образуется лишь при большом избытке соли металла, либо при использовании в качестве осадителя железистосинеродистой кислоты Н4[Fe(CN)6] или ее литиевой соли (И.В.Тананаев, М.И.Левина. Журнал аналитической химии. №1, 224, 1946 г.). Растворы нормальных ферроцианидов Li+, Na+, K+ и Cs+ могут быть получены различными путями. Например, при нагревании чистой берлинской лазури с соответствующими гидроокисями:

Fe4[Fe(CN)6]3+12LiOH=3Li4[Fe(CN)6]+4Fe(ОН)3.

Образующийся гидрооксид железа (III) отфильтровывается.

Другой способ основан на обменном разложении ферроцианида серебра соответствующим хлоридом или бромидом:

Ag4[Fe(CN)6]+4LiCl=Li4[Fe(CN)6]+4 AgCl.

(J.Meyer, Z.Anorg. Chem. 115, 203, 1921 г. Цитировано по И.В.Тананаев, Г.Б.Сейфер, Ю.Я.Харитонов и др. Химия ферроцианидов, изд. «Наука», М., 1971).

Использование бромида лития предпочтительно, т.к. растворимость бромида серебра значительно меньше. Выпавший в осадок галогенид серебра также отфильтровывается.

Наиболее распространенным способом получения ферроцианидов легких щелочных металлов является нейтрализация свободной железистосинеродистой кислоты гидратами окисей или карбонатами этих катионов:

H4[Fe(CN)6]+2Li2CO3=Li4[Fe(CN)6]+2Н2О+2СО2.

(И.В.Тананаев, Г.Б.Сейфер, Ю.Я.Харитонов и др. Химия ферроцианидов, изд. «Наука», M., 1971).

Однако все описанные методы трудоемки, требуют тщательного соблюдения условий проведения процесса, применения других операций, например, переосаждения из спирта или ацетона. В случае ферроцианида лития эта операция невозможна из-за высокой растворимости последнего в органических растворителях.

Задачей данного изобретения является упрощение технологии получения раствора ферроцианида лития.

При использовании заявляемого способа достигается следующий технический результат:

- упрощение способа за счет отнотипности проводимых операций;

- сокращение времени синтеза (не менее чем в 2 раза);

- повышение чистоты продукта (практически 100%).

Для решения указанной задачи и достижения технического результата предложен способ получения раствора ферроцианида лития, заключающийся в использовании сильнокислого катионита, переводе его из Н+ формы в литиевую форму, с последующим пропусканием через него раствора ферроцианида щелочного металла.

В качестве раствора ферроцианида щелочного металла может использоваться раствор желтой кровяной соли.

Способ может характеризоваться также тем, что в качестве катионита используют сильнокислый катионит КУ-2-8 в H+-форме, а перевод катионита в Li+-форму осуществляют пропусканием через него раствора гидрооксида лития с концентрацией 1-1,5 моль/л или пропусканием через него раствора ацетата лития с концентрацией 1-1,5 моль/л.

Концентрацию раствора желтой кровяной соли поддерживают в интервале 0,1-0,25 моль/л и пропускают раствор желтой кровяной соли через колонну катионита в Li+-форме со скоростью 2÷5 мл/мин.

Перевод H+ формы сильнокислого катионита, например, КУ-2-8 осложняется тем, что в лиотропном ряду сродство катионита к ионам Li+ минимальное, т.е. константа обмена ; поэтому использование неорганических солей, например LiCl, LiNO3, малоэффективно.

Превращение водородной формы КУ-2-8 в литиевую форму удобнее всего осуществлять, смещая равновесие процесса RH+Li+=RLi+H+ вправо. Это возможно двумя способами:

промывкой колонны, заполненной сильнокислым катионитом КУ-2-8 в Н+ форме раствором гидрооксида лития, или раствором органической соли лития, например, ацетатом лития.

При этом происходят следующие процессы:

Реакция идет до конца из-за малой константы диссоциации воды.

Эта реакция тоже практически проходит до конца из-за малой константы диссоциации уксусной кислоты (Кдисс.=1,75*10-5).

О степени насыщения катионита ионами лития (реакция 1) судят по анализу вытекающего элюата, пока концентрация LiOH в нем не достигнет его исходной концентрации. В случае уксуснокислого лития (реакция 2) сразу же за прохождением свободного объема в элюате появляется уксусная кислота. Процесс насыщения смолы ионами лития заканчивают, когда концентрация уксусной кислоты в вытекающем элюате сравняется с исходной концентрацией уксуснокислого лития.

После перевода ионита в литиевую форму колонна тщательно промывается дистиллированной водой до рН≈7÷8.

На фиг.1 представлена выходная кривая поглощения иона натрия на катионите КУ-2-8 в Н+-форме. Концентрация хлорида натрия - 1 моль/л, скорость элюирования 10 мл/мин. Объем набухшей смолы ~200 см3. Динамическая обменная емкость до проскока (площадь под кривой ОАВС) равна 280 мг-экв. Полная динамическая емкость (площадь под кривой ОАВД) равна 370 мг-экв. Отношение динамической емкости до проскока к полной динамической емкости равно ~0,76.

На фиг.2 представлена кривая насыщения катионита КУ-2-8 в Н+-форме ионами лития, полученная в режиме вытеснения. Объем набухшей смолы 200 см3. Полная динамическая обменная емкость катионита 440 мг-экв (точка Б на кривой).

На фиг.3 представлены кривые получения ферроцианида лития.

1 - исходная концентрация К4[Fe(CN)6] - 0,1 моль/л. Скорость элюирования - 3,5 мл/мин. Проскок ионов калия отмечен после прохождения через колонку 675 мл раствора желтой кровяной соли. Количество полученного Li4[Fe(CN)6] - 74 мМоль или 296 мг-экв. Концентрация Li4[Fe(CN)6] в элюате 0,109 моль/л.

2 - исходная концентрация К4[Fe(CN)6] - 0,166 моль/л. Скорость элюирования - 3,5 мл/мин. Объем до проскока ионов калия отмечен после прохождения через колонку 474 мл раствора желтой кровяной соли, что соответствует получению Li4[Fe(CN)6] - 70 мМоль или 280 мг-экв. Концентрация Li4[Fe(CN)6] в элюате 0,154 моль/л.

3 - исходная концентрация К4[Fe(CN)6] - 0,23 моль/л. Скорость элюирования - 3,0 мл/мин. Объем до проскока ионов калия отмечен после прохождения через колонну 330 мл раствора желтой кровяной соли, что соответствует получению Li4[Fe(CN)6] - 74 мМоль или 296 мг-экв. Концентрация Li4[Fe(CN)6] в элюате 0,225 моль/л.

Практическая реализация предлагаемого изобретения осуществлялась следующим образом: стеклянная колонна внутренним диаметром 3,3 см заполнялась 200 см3 набухшего в дистиллированной воде сильнокислого катионита КУ-2-8 в H+-форме. Высота слоя смолы составила 23 см.

Для определения рабочих характеристик колонны (динамической емкости до проскока, полной динамической обменной емкости) через нее пропускался 1 литр 1 моль/л раствора хлорида натрия со скоростью ~10 мл/мин. Для построения кривой насыщения отбирались порции элюата объемом по 25 мл, в которых алкалиметрическим методом определяли содержание соляной кислоты, образующейся по реакции (3).

По экспериментальным данным строилась выходная кривая, приведенная на фиг.1. Динамическая обменная емкость до проскока (площадь под кривой ОАБС) составила - 280 мг-экв, полная динамическая обменная емкость (площадь под кривой ОАБД) - 370 мг-экв, а их отношение - 0,76. После снятия выходной кривой колонна тщательно отмывалась дистиллированной водой до отрицательной реакции на хлор ионы с нитратом серебра. Эта колонна в дальнейшем использовалась в синтезе ферроцианида лития.

Для перевода смолы из Na+-формы в Н+-форму колонна промывалась 1 литром 2 моль/л раствора соляной кислоты и отмывалась водой до рН≈7. Превращение смолы КУ-2-8 из H+-формы в Li+-форму проводили путем промывки смолы 1,5 моль/л раствором гидрооксида лития. Этот процесс изображен на фиг.2. Появление LiOH (точка А) в элюате свидетельствует о том, что реализована динамическая емкость до проскока. Зная объем пропущенного раствора LiOH и его концентрацию, легко определить ее значение. Полная динамическая обменная емкость достигается в точке Б, когда концентрация LiOH в элюате достигает его начальной концентрации, после чего колонна тщательной промывается дистиллированной водой.

Примеры осуществления заявляемого способа.

Пример №1

Готовился исходный раствор желтой кровяной соли концентрацией ~0,1 моль/л, для чего взвешивали ~42 грамма желтой кровяной соли и растворяли в дистиллированной воде, после чего раствор переносили в колбу емкостью 1000 мл и доводили до метки.

Точная концентрация этого раствора устанавливалась цериметрически с ферроином в качестве индикатора. Концентрация желтой кровяной соли найдена равной 0,11 моль/л или 0,44 г-экв/л.

Приготовленный раствор пропускался через колонну со смолой КУ-2-8 в Li+-форме со скоростью 3,5 мл/мин. Для определения проскока через 50 мл элюента проводили качественную пробу на содержание ионов К+ по исчезновению изумрудно-зеленой окраски золя Со2[Fe(CN)6] (И.В. Тананаев, М.И. Левина, Зав. лаб., т.15, с.887, 1949). При использовании желтой кровяной соли с исходной концентрацией 0,11 моль/л проскок ионов калия был отмечен после прохождения через колонку 675 мл, что соответствовало получению ~74 ммоль или 296 мг-экв Li4[Fe(CN)6].

Пример №2

Готовился исходный раствор желтой кровяной соли примерной концентрацией 0,15 моль/л, для чего взвешивали ~64 грамма и растворяли в дистиллированной воде, переносили в литровую колбу и доводили до метки. Определяли точную концентрацию желтой кровяной соли цериметрически, как указано в примере №1. Ее значение равно 0,166 моль/л или 0,664 г-экв/л. Приготовленный раствор пропускали через катионит КУ-2-8 в Li+-форме со скоростью 3,5 мл/мин. Объем до проскока ионов калия составил 474 мл. Концентрация Li4[Fe(CN)6] цериметрически найдена равной 0,154 моль/л или 0,616 г-экв/л, что соответствовало 73 мМоль или 292 мг-экв Li4[Fe(CN)6].

Пример №3

Готовился раствор желтой кровяной соли примерной концентрацией 0,25 моль/л, для чего взвешивали ~106 грамм и растворяли в дистиллированной воде. Раствор переносили в колбу объемом 1000 мл и доводили до метки.

Точную концентрацию желтой кровяной соли устанавливали цериметрически. Она оказалась равной 0,23 моль/л или 0,92 г-экв/л.

Приготовленный раствор пропускали через колонну со скоростью 3,0 мл/мин. Проскок ионов калия отмечен при прохождении 330 мл раствора, который содержал 73 мМоль или 288 мг-экв Li4[Fe(CN)6].

Во всех случаях отношение динамической обменной емкости до проскока к полной динамической обменной емкости близко к величине 0,75.

В графической форме результаты экспериментов представлены на фиг.3.

Данный способ позволяет получать чистые растворы ферроцианида лития различной концентрации, упростить технологию вследствие однотипности операций способа и уменьшить время получения готового продукта.


СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ФЕРРОЦИАНИДА ЛИТИЯ
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ФЕРРОЦИАНИДА ЛИТИЯ
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ФЕРРОЦИАНИДА ЛИТИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 130.
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
27.08.2013
№216.012.65ad

Способ введения соединения урана в матрицу

Изобретение относится к области атомной техники и может быть использовано при изготовления топливного материала для тепловыделяющих элементов (твэлов) исследовательских ядерных реакторов. Способ введения соединения урана в матрицу заключается в пропитке пористого графитового блока раствором...
Тип: Изобретение
Номер охранного документа: 0002491666
Дата охранного документа: 27.08.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b7f

Способ сжатия двоичных данных в виде структурированных информационных блоков

Изобретение относится к вычислительной технике и может быть использовано в системах передачи и обработки цифровой информации. Технический результат заключается в улучшении свойств сжатия структурированных информационных блоков. Способ сжатия двоичных данных в виде структурированных...
Тип: Изобретение
Номер охранного документа: 0002497277
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8c50

Способ получения сорбента на основе микросфер зол-уноса для очистки жидких радиоактивных отходов (варианты)

Изобретение относится к сорбентам, полученным на основе микросфер зол-уноса тепловых электростанций, и может быть использовано для очистки жидких отходов от радионуклидов. Синтез сорбента включает осаждение активного компонента на поверхности микросфер путем перемешивания их с раствором...
Тип: Изобретение
Номер охранного документа: 0002501603
Дата охранного документа: 20.12.2013
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3c6

Ампульный химический источник тока

Предложенное техническое решение относится к области электротехники, а именно к резервным химическим источникам тока ампульного типа (АХИТ). Повышение уровня разрядных характеристик АХИТ при безопасности работы и удобстве монтажа является техническим результатом заявленного изобретения....
Тип: Изобретение
Номер охранного документа: 0002507641
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3dc

Магнитная система статора

Изобретение относится к области электротехники, в частности к магнитным системам статоров электрических машин постоянного тока и магнитных приводов. Технический результат: повышение магнитного потока магнитной системы статора в заданных габаритах. Магнитная система статора содержит радиально...
Тип: Изобретение
Номер охранного документа: 0002507663
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.b921

Радиоэлектронный блок

Изобретение относится к радиоэлектронным блокам пакетного типа, в которых металлические рамки электронных модулей являются частью корпуса радиоэлектронного блока, и может быть использовано при изготовлении радиоэлектронной аппаратуры, реализуемой на основе однотипных электронных модулей,...
Тип: Изобретение
Номер охранного документа: 0002513121
Дата охранного документа: 20.04.2014
Показаны записи 1-10 из 125.
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
27.08.2013
№216.012.65ad

Способ введения соединения урана в матрицу

Изобретение относится к области атомной техники и может быть использовано при изготовления топливного материала для тепловыделяющих элементов (твэлов) исследовательских ядерных реакторов. Способ введения соединения урана в матрицу заключается в пропитке пористого графитового блока раствором...
Тип: Изобретение
Номер охранного документа: 0002491666
Дата охранного документа: 27.08.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b7f

Способ сжатия двоичных данных в виде структурированных информационных блоков

Изобретение относится к вычислительной технике и может быть использовано в системах передачи и обработки цифровой информации. Технический результат заключается в улучшении свойств сжатия структурированных информационных блоков. Способ сжатия двоичных данных в виде структурированных...
Тип: Изобретение
Номер охранного документа: 0002497277
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8c50

Способ получения сорбента на основе микросфер зол-уноса для очистки жидких радиоактивных отходов (варианты)

Изобретение относится к сорбентам, полученным на основе микросфер зол-уноса тепловых электростанций, и может быть использовано для очистки жидких отходов от радионуклидов. Синтез сорбента включает осаждение активного компонента на поверхности микросфер путем перемешивания их с раствором...
Тип: Изобретение
Номер охранного документа: 0002501603
Дата охранного документа: 20.12.2013
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3c6

Ампульный химический источник тока

Предложенное техническое решение относится к области электротехники, а именно к резервным химическим источникам тока ампульного типа (АХИТ). Повышение уровня разрядных характеристик АХИТ при безопасности работы и удобстве монтажа является техническим результатом заявленного изобретения....
Тип: Изобретение
Номер охранного документа: 0002507641
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3dc

Магнитная система статора

Изобретение относится к области электротехники, в частности к магнитным системам статоров электрических машин постоянного тока и магнитных приводов. Технический результат: повышение магнитного потока магнитной системы статора в заданных габаритах. Магнитная система статора содержит радиально...
Тип: Изобретение
Номер охранного документа: 0002507663
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.b921

Радиоэлектронный блок

Изобретение относится к радиоэлектронным блокам пакетного типа, в которых металлические рамки электронных модулей являются частью корпуса радиоэлектронного блока, и может быть использовано при изготовлении радиоэлектронной аппаратуры, реализуемой на основе однотипных электронных модулей,...
Тип: Изобретение
Номер охранного документа: 0002513121
Дата охранного документа: 20.04.2014

Похожие РИД в системе