×
10.04.2015
216.013.3913

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для определения колебаний кожного кровотока в конечностях. С помощью тепловизионной камеры определяют распределение температуры кожи и ее динамику во времени. Колебания температуры, определенные в каждой точке термограммы конечности, раскладывают на спектральные составляющие с использованием математического вейвлет-преобразования. Выполняют смещение каждой спектральной составляющей частоты f к предыдущему моменту времени на интервал Δt, определяемый формулой , где z - толщина слоя биоткани, λ - коэффициент теплопроводности кожи, с - удельная теплоемкость кожи, ρ - плотность кожи, f - частота i-й спектральной составляющей. Амплитуду каждой спектральной составляющей умножают на коэффициент, определяемый формулой . Выполняют обратное вейвлет-преобразование спектральных составляющих в каждой точке термограммы и получают результирующий массив данных, представляющий собой распределение колебаний кожного кровотока. Способ обеспечивает увеличение исследуемой площади поверхности объекта и повышение точности определения параметров периферического кровотока температурными методами за счет использования новой модели распространения температурного сигнала в биологической ткани и визуализации пространственных изменений колебаний кровотока. 1 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для определения колебаний кожного кровотока в конечностях с использованием результатов температурных измерений на поверхности кожи.

Кровоток в конечностях в течение длительного времени является объектом повышенного интереса физиологов и клиницистов, вследствие его ярко выраженной вариабельности, как в состоянии покоя, так и при проведении нагрузочных проб (Burton, A.C. A study of the adjustment of peripheral vascular tone to the requirement of the regulation of body temperature /A.C. Burton, R.M. Taylor //Am. J. Physiol.- 1940. - Vol.129, - P. 566-577; Burton, A.C. Range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature /A.C. Burton //Am. J. Physiol. - 1939. - Vol.127. - №3. - P. 437-453; Shitzer, A. Simultaneous measurements of finger-tip temperatures and blood perfusion rates in a cold environment /A. Shitzer, A. Stroschein, M.W. Sharp, R.R. Gonzalez, K.B. Pandolf //Journal of thermal biology. - 1997, - Vol.22, - №3, - P. 159-167).

Область техники

Наиболее распространенными методами контроля колебаний кожного кровотока являются лазерная допплеровская флоуметрия (ЛДФ) и фотоплетизмография (ФПГ) (Wright C.I., Kroner C.I. and Draijer R. 2006, Non-invasive methods and stimuli for evaluating the skin's microcirculation Journal of pharmacological and toxicological methods 54, 1-25). Измерение колебаний кровотока методами ЛДФ и ФПГ имеют ряд ограничений, связанных, прежде всего, с влиянием контакта биологической ткани с датчиком и неоднородностью распределения кровотока по зондируемой области. В этом отношении преимуществом должны обладать бесконтактные методы, с помощью которых возможно реализовать сбор информации о распределении кровотока в исследуемой области ткани и картировать амплитудные значения колебаний, т.е. визуализировать колебания кровотока.

Известен метод изучения кожного кровотока с помощью лазерной допплеровской визуализации (ЛДВ) (Serov A., Steinacher B., Lasser T. Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera //Optics Express. - 2005. - Т. 13. - №10. - С. 3681-3689) и спекл-контрастный метод LASCA (Briers, J.D., & Webster, S. (1996). Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. Journal of biomedical optics, 1(2), 174-179). При использовании указанных методов визуализации кровотока возникают трудности в определении концентрации крови (а следовательно, и кровотока) поскольку она зависит от амплитуды лазерного излучения, отраженного или рассеянного биологической тканью. Если происходит изменение структуры ткани, например, переход от кожи к ногтю, то может наблюдаться увеличение амплитуды сигнала вследствие многократного рассеяния излучения ногтевой пластиной, при этом структурные оптические свойства ногтя индивидуальны для каждого испытуемого и возникает неоднозначность в определении концентрации крови под ногтевой пластиной (Тучин В.В. Оптика биологических тканей: методы рассеяния света в медицинской диагностике. пер. с англ. В. Л. Дербова, М.: ФИЗМАТЛИТ - 2013, 811 с.).

Альтернативой лазерным методам визуализации колебаний кровотока могут стать методы термометрии. Использование тепловизионных методов анализа кровотока обеспечивает бесконтактность измерений, так как они основаны на регистрации собственного излучения объекта. Тепловизионные методы обеспечивают высокую скорость измерений температуры (50 и более измерений в секунду) и широкую область охвата поверхности объекта. Трудности применения тепловизионных методов для визуализации колебаний кровотока связаны в основном с различием формы колебаний кожного кровотока и температуры кожи. При этом существует проблема установления однозначного соответствия между изменениями температуры кожи и кровотока, что вынуждает исследователей рассматривать колебания температуры и кровотока как независимые колебания, между которыми имеется некоторая корреляция.

Наиболее близким к заявляемому решению является «Способ регистрации микроциркуляции крови» (Подтаев С.Ю., Ершова А.И, Попов А.В., Морозов М.К. Пат. №2390306, опубл. 27.05.2010, Бюл. №15). В соответствии с указанным способом уровень микроциркуляции крови оценивается посредством регистрации температуры на ногтевой фаланге ладонной поверхности указательного пальца пациента. Непрерывно регистрируют температуру с помощью контактного термодатчика в течение 10 минут в исходном состоянии (в течение указанной длительности регистрируются несколько периодов колебаний в эндотелиальном, нейрогенном и миогенном диапазонах), затем в течение 3 минут - во время дыхательной или холодовой пробы и в течение 10 минут после пробы. Вывод о состоянии регуляции кровотока делается на основе установленной авторами корреляции между температурой кожи и колебаниями кровотока, регистрируемыми доплеровским флоуметром (Podtaev S. Wavelet-based correlations of skin temperature and blood flow oscillations/S.Podtaev, M.Morozov, P.Frick //. Cardiovasc. Eng. - 2008. - Vol.8. - N3. - P.185-189). Для получения информации о колебаниях кровотока в дыхательном, миогенном, нейрогенном и эндотелиальном диапазонах используют вейвлет-анализ температурных изменений.

В данном способе вывод о регуляции кровотока делается на основе существования корреляции температуры и кровотока, при этом расчет корреляции проводится с использованием исходных сигналов без каких-либо изменений. Поскольку сигналы колебаний температуры и кровотока имеют различную форму, то для адекватного описания колебаний кровотока требуется модель, объясняющая различия форм сигналов. Как будет показано ниже, использование модельных представлений заявляемого способа позволяет преобразовать температурный сигнал так, чтобы его форма приближалась к форме колебаний кровотока.

Однако в соответствии с указанным способом измерения проводятся только в локальной зоне указательного пальца и не позволяют оценить распределения кровотока в других пальцах и кисти, что открыло бы возможность диагностики, например нарушений иннервации локтевого, лучевого и срединного нервов, сравнение симметричности распределения кровотока на двух противоположных конечностях и т.п.

Рассмотренный способ анализа параметров кровотока использует температурные измерения, а для обработки экспериментальных данных применяется вейвлет-анализ колебаний температуры, поэтому «Способ регистрации микроциркуляции крови» принят за прототип.

Задачей настоящего решения является визуализация колебаний кожного кровотока в конечностях с помощью регистрации динамики распределения температуры кожи (динамической термограммы) тепловизионной камерой, математической обработки температурных данных и преобразования термограмм в карты распределения колебаний кровотока.

Технический результат заключается в увеличении исследуемой площади поверхности объекта и повышении точности определения параметров периферического кровотока температурными методами за счет использования новой модели распространения температурного сигнала в биологической ткани и визуализации пространственных изменений колебаний кровотока.

Указанный технический результат достигается тем, что способ визуализации колебаний кожного кровотока в конечностях, включающий тепловизионные измерения колебаний температуры конечностей и спектральный анализ колебаний температуры, согласно решению предусматривает регистрацию термограмм конечности испытуемого в течение не менее 20 минут, после чего колебания температуры в каждой точке термограммы подвергаются спектральному анализу (например, вейвлет-анализу), результатом которого является выделение отдельных спектральных составляющих, амплитуда которых изменяется во времени, далее к полученным спектральным составляющим применяют формулу , вносящую временной сдвиг ΔtPHASE спектральных составляющих в зависимости от частоты f, и формулу , обеспечивающую преобразование амплитуд CAMP спектральных составляющих, где z - толщина слоя биоткани, λ - коэффициент теплопроводности кожи, с - удельная теплоемкость кожи, ρ - плотность кожи, fi -частота i-й спектральной составляющей, затем к преобразованным спектральным составляющим применяют обратную формулу спектрального синтеза, при этом полученный сигнал будет представлять собой колебания кровотока, а сопоставление определенного цвета каждому значению амплитуды колебаний кровотока в каждой точке термограммы позволит в результате визуализировать колебания кожного кровотока с помощью математической обработки динамических термограмм.

Изобретение поясняется чертежами. На фиг. 1а приведены временные зависимости температуры (штриховая линия) и кровотока (сплошная линия - огибающая ФПГ, измеряемая в вольтах), на фиг. 1б - нормированные значения колебаний кровотока (шкала слева) и восстановленных колебаний кровотока с использованием температурных данных (шкала справа). На фиг. 2 - спектральные составляющие колебаний температуры (штриховые линии) и колебаний кровотока (сплошные линии), построенные для частот 0.01, 0.03, 0.05 Гц, для каждой частоты отмечены различные значения времен запаздывания температурного сигнала Δt1, Δt2, Δt3, уменьшающиеся с ростом частоты. Фиг. 3 - частотная зависимость запаздывания спектральных составляющих температурного сигнала относительно составляющих колебаний кровотока. Фиг. 4 - частотная зависимость затухания спектральных составляющих температурного сигнала ST относительно составляющих колебаний кровотока SBF. Фиг. 5 - пример визуализации колебаний кровотока в конечностях, фиг. 6а - исходный сигнал колебаний температуры пальца, 6б,в - восстановленные сигналы колебаний кровотока в эндотелиальном (фиг. 6б) и нейрогенном (фиг. 6в) диапазонах.

Сущность изобретения

Колебания кровотока в состоянии покоя обусловлены как реакцией на изменение температуры окружающей среды, так и спонтанной регуляцией тонуса сосудов, обуславливающей низкочастотные колебания объемного кровотока в дыхательном, миогенном, нейрогенном и эндотелиальном диапазонах частот (Bernjak, A. Low-frequency blood flow oscillations in congestive heart failure and after β1-blockade treatment /A. Bernjak, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska //Microvascular Research, -2008. - Vol.76, - №3, - P. 224-232).

Для восстановления колебаний кровотока по результатам температурных измерений необходимо определить связь двух сигналов. Связь колебаний температуры конечностей с колебаниями кожного кровотока была установлена в результате проведения собственных исследований. В ходе исследований измерялись колебания температуры кожи пальцев и кровотока группы испытуемых, находящихся в нормальных условиях в состоянии покоя в течение 20 минут, с частотой дискретизации 2 Гц. Сигнал кровотока оценивался по огибающей фотоплетизмографического (ФПГ) сигнала, регистрируемого с помощью отражательного датчика KL-79102 (Тайвань). Температура определялась с помощью тепловизора ThermaCam SC 3000 Flir Systems (Швеция) с температурной чувствительностью 0.02°С.

Регистрация сигнала в течение 20 минут необходима для получения данных об эндотелиальных колебаниях, наибольший период которых равен 200 секундам. Таким образом, за время 20 мин=1200 с будет возможно наблюдение 6 полных периодов колебаний.

Группу испытуемых составляли 31 человек: 21 мужчина и 10 женщин в возрасте 20-35 лет. Измерения выполнялись после адаптации испытуемых к лабораторным условиям в течение 10-15 мин. Перед измерениями испытуемые не употребляли тонизирующих или алкогольных напитков. Все испытуемые являлись не курящими. Измерения проводились в положении испытуемых сидя, руки располагались на столе с поверхностью из материала, имеющего малую теплоемкость (пенопласт). Указательный палец располагался поверх ФПГ-датчика. Рядом с ФПГ-датчиком регистрировалась средняя температура дистальной фаланге пальца. Вид регистрируемых сигналов приведен на фиг. 1а.

В соответствии с используемой моделью колебания кровотока генерируют тепловую волну, распространяющуюся с некоторой глубины к поверхности кожи. Для волны характерно затухание и конечная скорость распространения. Поэтому между сигналами колебаний температуры и кровотока может быть установлена связь посредством анализа колебаний на отдельных частотах. При этом частотные зависимости задержки и затухания температурного сигнала относительно сигнала кровотока будут характеризовать свойства кожи.

Для исследования связи спектральных составляющих колебаний температуры и кровотока использовался вейвлет-анализ с базисом Морле. Использование базиса Морле позволяет однозначно сопоставить масштаб базиса с частотой гармонических колебаний. Получаемые спектральные составляющие имели вид, представленный на фиг. 2. По этим данным анализировали временной сдвиг спектральных составляющих температуры относительно составляющих кровотока и анализ затухания спектральных составляющих температуры. В результате были построены усредненные по группе испытуемых частотные зависимости временного сдвига спектральных составляющих температуры фиг. 3 и затухания спектральных составляющих фиг. 4.

Аналитически приведенные частотные зависимости временного сдвига и затухания описываются выражениями

,(1)

,(2)

где z - толщина слоя биоткани, λ - коэффициент теплопроводности кожи, с - удельная теплоемкость кожи, ρ - плотность кожи, fi - частота i-й спектральной составляющей.

Спектральная составляющая кровотока SBF может быть получена посредством преобразования спектральной составляющей температуры ST по формуле

(3)

Проводя синтез спектральных составляющих SBF (например, по формуле обратного вейвлет преобразования), получим сигнал, рассматриваемый как колебания кровотока восстановленные из температурных данных. На фиг. 1б приведены зависимости, демонстрирующие, что форма колебаний кровотока, восстановленных из температурных данных (штриховая линия), близка к форме колебаний, регистрируемых датчиком кровотока (сплошная линия).

Использование описанного алгоритма в каждой точке термограммы позволяет визуализировать распределение колебаний кровотока в конечностях. Примеры восстановленных карт распределения колебаний кровотока верхних конечностей приведены на фиг. 5. На фиг. 6а приведен пример кривой изменения температуры в зоне пальца. Восстановленные из данной кривой колебания кровотока эндотелиального диапазона приведены на фиг. 6б, а нейрогенного диапазона - на фиг. 6в.

Для проверки достоверности колебаний кровотока, восстановленных из температурных данных, проводилось их сопоставление с результатами фотоплетизмографического обследования в нейрогенном и эндотелиальном диапазонах для группы испытуемых. Результаты сопоставления приведены в таблице 1.

Таблица 1. Средние значения корреляции колебаний кровотока, восстановленных из температурных данных, и колебаний, измеренных ФПГ-датчиком кровотока. (Усреднение выполнено по группе из 31 испытуемых, в круглых скобках указаны значения 1 и 3 квартилей распределения значений корреляции).

Корреляция спектральных составляющих колебаний температуры и кровотока Эндотелиальный диапазон
(0.005 - 0.02 Гц)
Нейрогенный диапазон
(0.02 - 0.05 Гц)
Эндотелиальный+нейрогенный диапазон
(0.005-0.05 Гц)
Исходные сигналы 0.19
(0.09, 0.28)
0.41
(0.22, 0.54)
0.16
(0.11, 0.18)
После обработки 0.71
(0.68, 0.75)
0.57
(0.51, 0.63)
0.67
(0.64, 0.74)

Данные таблицы показывают увеличение корреляции колебаний в исследуемых диапазонах после обработки от ~ 0.2 до ~ 0.7, что для физиологических систем свидетельствует о высокой степени связи двух процессов. Таким образом, продемонстрировано, что колебания кровотока, восстанавливаемые с использованием заявляемого способа визуализации колебаний кровотока в области конечностей, действительно отражают изменения, регистрируемые датчиком кровотока. Применение используемого алгоритма преобразования колебаний температуры в значения кровотока в каждой точке термограммы и сопоставление каждому найденному значению определенного цвета позволяет визуализировать колебания кровотока, как показано на фиг. 5. По сравнению с фотоплетизмографическими данными метод визуализации распределения колебаний кровотока дает возможность контроля гемодинамики одновременно в нескольких зонах конечности.


СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
СПОСОБ ВИЗУАЛИЗАЦИИ КОЛЕБАНИЙ КОЖНОГО КРОВОТОКА В КОНЕЧНОСТЯХ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 71.
10.12.2015
№216.013.98e7

Способ определения содержания мекония в амниотической жидкости

Изобретение относится к медицине, в частности акушерству и перинатологии, и может быть использовано для диагностики содержания мекония в амниотической жидкости. Регистрируют интенсивность отраженной ультразвуковой волны. Выделяют изображение в области визуализации амниотической жидкости....
Тип: Изобретение
Номер охранного документа: 0002570763
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a26b

Способ и устройство формирования амплитудно-частотной характеристики с высоким коэффициентом прямоугольности трактов частотно-модулированных сигналов с импульсной модуляцией

Изобретение относится к области радиоэлектроники и может быть использовано в качестве селективного устройства. Технический результат - увеличение затухания за полосой пропускания амплитудно-частотной характеристики (АЧХ). Способ формирования АЧХ с высоким коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002573221
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.ce25

Способ получения йодпроизводных хитозана

Изобретение относится к способу получения йодпроизводных хитозана и может быть использовано в химической промышленности, медицине, фармацевтике и ветеринарии. Способ заключается в том, что производят модификацию хитозансодержащего вещества при комнатной температуре в йодсодержащих парах более 5...
Тип: Изобретение
Номер охранного документа: 0002575784
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.e8e4

Волноводная структура с разрешенными и запрещенными зонами

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые...
Тип: Изобретение
Номер охранного документа: 0002575995
Дата охранного документа: 27.02.2016
20.06.2016
№217.015.0428

Низкоразмерный свч фотонный кристалл

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002587405
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.39ad

Способ флуориметрического определения флуниксина

Изобретение относится к аналитической химии, конкретно к определению флуниксина в лекарственных препаратах. При осуществлении способа в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации 1·10 М, соль тербия Tbдо концентрации 1·10 М, лекарственный препарат...
Тип: Изобретение
Номер охранного документа: 0002582960
Дата охранного документа: 27.04.2016
20.05.2016
№216.015.4088

Катализатор для очистки газов от оксидов азота и углерода (ii)

Изобретение относится к катализатору для очистки газовых выбросов от оксидов азота и углерода (II), содержащему комплекс переходного металла, нанесенного на носитель из оксида алюминия. При этом в качестве переходного металла выбрано комплексное соединение меди -...
Тип: Изобретение
Номер охранного документа: 0002584158
Дата охранного документа: 20.05.2016
27.08.2016
№216.015.50ff

Способ лечения косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия. Пациента просят следить за объектом, колеблющимся с постоянной частотой, выбранной из диапазона от 0,2 до 0,5 Гц, в начале и в конце упражнений в течение 10-40 с, в зависимости от выбранной...
Тип: Изобретение
Номер охранного документа: 0002595793
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.6429

Радиолокационная станция на базе сетей сотовой связи стандарта gsm с устройством формирования направленного подсвета

Изобретение относится к разнесенной радиолокации. Достигаемый технический результат - усиление подсвечивающего сигнала стандарта GSM в направлениях и эшелонах со слабым или отсутствующим покрытием сетей сотовой связи до требуемого уровня мощности. Указанный результат достигается за счет того,...
Тип: Изобретение
Номер охранного документа: 0002589018
Дата охранного документа: 10.07.2016
Показаны записи 51-60 из 93.
10.10.2015
№216.013.8184

Способ содействия пассажу мочи в мочеточнике

Изобретение относится к медицине, а именно - к нефрологии. Способ включает воздействие электрическим током через электроды. Один электрод располагают в области лобковой кости, остальные - паравертебрально по внешнему краю мышцы, выпрямляющей позвоночник, в области между XII ребром и крестцовым...
Тип: Изобретение
Номер охранного документа: 0002564753
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.822c

Способ получения микротрубок из хитозана (варианты)

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микротрубок из хитозана, заключающийся в том, что готовят раствор хитозана в органической кислоте, опускают стержень в раствор хитозана в органической кислоте, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002564921
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.98e7

Способ определения содержания мекония в амниотической жидкости

Изобретение относится к медицине, в частности акушерству и перинатологии, и может быть использовано для диагностики содержания мекония в амниотической жидкости. Регистрируют интенсивность отраженной ультразвуковой волны. Выделяют изображение в области визуализации амниотической жидкости....
Тип: Изобретение
Номер охранного документа: 0002570763
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a26b

Способ и устройство формирования амплитудно-частотной характеристики с высоким коэффициентом прямоугольности трактов частотно-модулированных сигналов с импульсной модуляцией

Изобретение относится к области радиоэлектроники и может быть использовано в качестве селективного устройства. Технический результат - увеличение затухания за полосой пропускания амплитудно-частотной характеристики (АЧХ). Способ формирования АЧХ с высоким коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002573221
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.ce25

Способ получения йодпроизводных хитозана

Изобретение относится к способу получения йодпроизводных хитозана и может быть использовано в химической промышленности, медицине, фармацевтике и ветеринарии. Способ заключается в том, что производят модификацию хитозансодержащего вещества при комнатной температуре в йодсодержащих парах более 5...
Тип: Изобретение
Номер охранного документа: 0002575784
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.e8e4

Волноводная структура с разрешенными и запрещенными зонами

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые...
Тип: Изобретение
Номер охранного документа: 0002575995
Дата охранного документа: 27.02.2016
20.06.2016
№217.015.0428

Низкоразмерный свч фотонный кристалл

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002587405
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.39ad

Способ флуориметрического определения флуниксина

Изобретение относится к аналитической химии, конкретно к определению флуниксина в лекарственных препаратах. При осуществлении способа в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации 1·10 М, соль тербия Tbдо концентрации 1·10 М, лекарственный препарат...
Тип: Изобретение
Номер охранного документа: 0002582960
Дата охранного документа: 27.04.2016
20.05.2016
№216.015.4088

Катализатор для очистки газов от оксидов азота и углерода (ii)

Изобретение относится к катализатору для очистки газовых выбросов от оксидов азота и углерода (II), содержащему комплекс переходного металла, нанесенного на носитель из оксида алюминия. При этом в качестве переходного металла выбрано комплексное соединение меди -...
Тип: Изобретение
Номер охранного документа: 0002584158
Дата охранного документа: 20.05.2016
+ добавить свой РИД