×
27.03.2015
216.013.3526

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.
Основные результаты: Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Изобретение относится к технике измерения параметров нелинейных элементов электрических цепей с температурозависимой вольт-амперной характеристикой (ВАХ) и может быть использовано, например, при параметрическом контроле полупроводниковых диодов и полупроводниковых приборов с р-n-переходами.

Известен способ измерения дифференциального сопротивления полупроводниковых диодов (см. ГОСТ 18986.14-85 Диоды полупроводниковые. Методы измерения дифференциального и динамического сопротивлений), заключающийся в подаче постоянного тока I0 для задания рабочей точки и переменного гармонического тока малой амплитуды Im в качестве тестового сигнала на калибровочный резистор сопротивлением RK, в измерении амплитуды U переменного напряжения на калибровочном резисторе, в подключении к генератору тока вместо калибровочного резистора контролируемого диода и в измерении амплитуды U переменной составляющей напряжения на контролируемом диоде и определении дифференциального сопротивления диода по формуле

Условием точного измерения дифференциального сопротивления нелинейных двухполюсников является малость тестового сигнала. В ГОСТ 18986.14-85 условие малости тестового сигнала задается в виде ограничения амплитуды переменного тока, которая не должна превышать 10% значения постоянного тока.

Недостатком известного способа является большая погрешность, обусловленная саморазогревом p-n-перехода диода в процессе измерения рассеиваемой мощностью.

Известен способ определения дифференциального сопротивления температурозависимых двухполюсников по наклону изотермической ВАХ, измеренной в импульсном режиме путем подачи на контролируемый двухполюсник последовательности импульсов тока с нарастающей амплитудой, и в измерении амплитуды импульсов напряжения на контролируемом двухполюснике (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа. - 1975. - С.777). Способ измерения изотермической ВАХ путем подачи последовательности импульсов тока с линейно нарастающей амплитудой реализован ряде современных параметрических анализаторов (см., например, Keithley 420 SCS Parameter Analyzer: www.keithley.ru/products/semiconductors/dcac/carrentvoltage/420scs).

Недостатком способа является низкая точность, обусловленная большой погрешностью однократного измерения импульсного напряжения на контролируемом двухполюснике и необходимостью вычисления разности двух близких по значению напряжений. Известно, что погрешность разности двух близких по значению физических величин, измеренных даже с небольшой погрешностью, во много раз превышает погрешность измерения каждой из величин.

Технический результат - повышение точности измерения дифференциального сопротивления нелинейных двухполюсников с температурочувствительной ВАХ.

Технический результат достигается тем, что в известном способе, состоящем в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Формы сигналов на контролируемом двухполюснике, иллюстрирующие и поясняющие принцип измерения, показаны на фиг.1. При подаче на контролируемый двухполюсник амплитудно-модулированной по гармоническому закону последовательности импульсов тока импульсное напряжение на контролируемом двухполюснике будет также амплитудно-модулированным по закону, близкому к гармоническому, со средней амплитудой Uи, при этом, если глубина M модуляции импульсов тока мала, амплитуда Um огибающей импульсного напряжения на контролируемом двухполюснике будет пропорциональна дифференциальному сопротивлению двухполюсника При малой длительности τи и большой скважности Qи импульсов тока разогревом активной области контролируемого двухполюсника рассеиваемой мощностью можно пренебречь. Сущность изобретения состоит в том, что при амплитудно-импульсной модуляции тестовых импульсов тока и последующем измерении полезного сигнала на частоте модуляции за счет частотной фильтрации и многократного повторения измерительного сигнала существенно уменьшаются шумы и пульсации источника питания и измерительных цепей, что повышает помехоустойчивость способа и снижает погрешность измерения дифференциального сопротивления контролируемого двухполюсника по сравнению с известными способами.

Выбор временных параметров тестового сигнала, то есть длительности τи и скважности Qи импульсов тока, определяется теплофизическими параметрами двухполюсника: тепловой постоянной времени τT и тепловым сопротивлением RT. Для полупроводниковых приборов характерная тепловая постоянная времени кристалла составляет сотни микросекунд и длительность импульсов тока рекомендуется выбирать не более 100 мкс. Приращение температуры активной области полупроводникового прибора в импульсном режиме при малой глубине модуляции определяется по формуле ΔT=RTUиIи/Qи, то есть в Qи раз меньше, чем в статическом режиме. В большинстве практических случаев при тех параметрах электрического режима, при которых измеряются характеристики полупроводниковых приборов, перегрев их активной области в статическом режиме не превышает 40-50°C и уже при скважности Qи>30 перегрев активной области контролируемого двухполюсника в импульсном не будет превышать 1-2°C. Заметим, что частота модуляции Ω последовательности импульсов тока согласно теоремы Котельникова должна выбираться из условия Ω<(1/4τиQи).

Структурная схема устройства, реализующего способ, показана на фиг.2, а эпюры, поясняющие работу устройства, - на фиг.3.

Устройство содержит клеммы 1 для подключения контролируемого двухполюсника, генератор импульсов тока 2, генератор низкой частоты 3, модулятор 4, демодулятор 5 и селективный вольтметр 6. При этом одна из клемм для подключения контролируемого двухполюсника соединена с общей шиной (землей) устройства, а вторая клемма - с выходом модулятора 4, сигнальный вход которого соединен с выходом генератора импульсов тока 2, а модулирующий вход модулятора соединен с выходом генератора низкой частоты 3, вторая клемма для подключения контролируемого двухполюсника соединена также со входом демодулятора 5, выход которого подключен ко входу селективного вольтметра 6.

Устройство работает следующим образом. После подключения контролируемого двухполюсника к клеммам 1 и подачи сигнала пуск на генератор импульсов тока 2 и генератор низкой частоты 3 на входы модулятора 4 поступает последовательность коротких импульсов тока большой скважности и модулирующее гармоническое напряжение заданной низкой частоты, с выхода модулятора амплитудно-модулированная последовательность импульсов тока со средней амплитудой Iи и глубиной модуляции M (фиг.3а) подается на контролируемый двухполюсник, импульсное напряжение на контролируемом двухполюснике, которое также является импульсно модулированным (фиг.3б) подается на вход демодулятора 5 и с выхода демодулятора огибающая импульсного напряжения (фиг.3в) поступает на вход селективного вольтметра 6, настроенного на частоту модуляции. По показанию Aпок селективного вольтметра определяем амплитуду Um огибающей импульсного напряжения по формуле Um=kAпок, где коэффициент k определяется типом преобразователя переменного напряжения в постоянное селективного вольтметра, и далее рассчитываем дифференциальное сопротивление контролируемого двухполюсника по формуле

Заметим, что если глубину М модуляции тока при заданной средней амплитуде импульсов тока задать в выбранной системе единиц из условия MIи=k×10n, где n - целое число, то показания селективного вольтметра будут равны дифференциальному сопротивлению контролируемого двухполюсника.

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 259.
20.04.2015
№216.013.43d5

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548863
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548864
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d7

Способ изготовления осесимметричных полых изделий с отверстием в донной части

Изобретение относится к обработке металлов давлением, а именно к способам отбортовки отверстий, и может быть использовано при изготовлении осесимметричных полых изделий с отверстием в донной части. Способ включает вырубку плоской кольцевой заготовки, последующую отбортовку отверстия до...
Тип: Изобретение
Номер охранного документа: 0002548865
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4430

Ремень безопасности транспортного средства

Изобретение относится к области обеспечения пассивной безопасности водителя и пассажиров транспортных средств. Ремень включает лямку 1, пряжку 2, замок 3, укрепленный на боковине 4 рамы сиденья 5 с помощью соединительного устройства, выполненного в виде прикрепленной к замку стержневой скобы 6...
Тип: Изобретение
Номер охранного документа: 0002548954
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4438

Способ деаэрации воды для тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях и котельных установках, работающих на природном газе. Способ деаэрации воды для тепловой электрической станции включает подачу в деаэратор исходной воды и десорбирующего агента и отвод...
Тип: Изобретение
Номер охранного документа: 0002548962
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.44b0

Способ работы системы горячего водоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в системах горячего водоснабжения. Способ работы системы горячего водоснабжения, по которому горячую воду из подающего и обратного трубопроводов теплосети направляют в смесительное устройство, в котором устанавливают...
Тип: Изобретение
Номер охранного документа: 0002549082
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.44b7

Способ работы открытой двухтрубной системы теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения. Способ работы открытой двухтрубной системы теплоснабжения, по которому сетевую воду потребителям подают из теплоисточника по подающему и отводят по обратному трубопроводам теплосети для покрытия...
Тип: Изобретение
Номер охранного документа: 0002549089
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4524

Рекуператор электроэнергии для преобразователей частоты со звеном постоянного тока

Изобретение относится к области электротехники. Рекуператор электроэнергии для преобразователей частоты со звеном постоянного тока, содержащий однофазный транзисторный мост, состоящий из четырех транзисторов, параллельно которым соединены четыре диода. Устройство содержит конденсатор, первый...
Тип: Изобретение
Номер охранного документа: 0002549198
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.56d6

Устройство для шлифования

Изобретение относится к обработке металлов резанием и может быть использовано на операциях шлифования с подачей смазочно-охлаждающей жидкости (СОЖ). Устройство содержит шлифовальный круг и узлы отвода воздуха от торцов шлифовального круга. Последние установлены на торцах круга и выполнены в...
Тип: Изобретение
Номер охранного документа: 0002553760
Дата охранного документа: 20.06.2015
Показаны записи 81-90 из 431.
20.10.2013
№216.012.76be

Система теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми...
Тип: Изобретение
Номер охранного документа: 0002496058
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.76bf

Система теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения, содержащая централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми...
Тип: Изобретение
Номер охранного документа: 0002496059
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7b1f

Логический модуль

Изобретение предназначено для реализации симметричных логических функций и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является обеспечение реализации любой из трех простых симметричных булевых функций, зависящих...
Тип: Изобретение
Номер охранного документа: 0002497181
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b28

Функциональный формирователь

Изобретение предназначено для воспроизведения функций непрерывной логики и может быть использовано в системах вычислительной техники как средство логической обработки континуальных данных. Техническим результатом является обеспечение воспроизведения произвольной непрерывно-логической функции,...
Тип: Изобретение
Номер охранного документа: 0002497190
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8cf4

Способ конвективной сушки керамических изделий с регенерацией сушильного агента в трубе газодинамической температурной стратификации

Изобретение относится к технологическим процессам сушки керамических изделий. Техническим результатом предлагаемого способа является повышение энергетической эффективности процесса сушки. Способ сушки включает регенерацию сушильного агента, заключающуюся в том, что сушильный агент подают в...
Тип: Изобретение
Номер охранного документа: 0002501767
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9140

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502877
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9141

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502878
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9142

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502879
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93ce

Способ комбинированной обработки точением и поверхностным пластическим деформированием

Способ относится к комбинированной обработке точением и поверхностным пластическим деформированием цилиндрической поверхности вращающейся заготовки. Для повышения производительности формирования в поверхностном слое заготовки остаточных сжимающих напряжений обработку ведут токарным резцом и...
Тип: Изобретение
Номер охранного документа: 0002503532
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93cf

Устройство для микроподачи заготовок при шлифовании

Изобретение относится к абразивной обработке и может быть использовано в машиностроении и приборостроении при окончательной обработке заготовок шлифованием. Устройство для микроподачи заготовок содержит основание, расположенную параллельно ему верхнюю плиту и силовой элемент, включающий упор и...
Тип: Изобретение
Номер охранного документа: 0002503533
Дата охранного документа: 10.01.2014
+ добавить свой РИД