20.04.2015
216.013.4413

СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева p-n-перехода диода протекающим током в процессе измерения. Используется известный способ измерения последовательного сопротивления базы диода, в котором через диод пропускают прямой ток различной величины и измеряют падение напряжения на диоде при этих значениях прямого тока. Искомую величину последовательного сопротивления базы диода определяют по известным формулам. Для достижения технического результата прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI и измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока. Последовательное сопротивление базы определяется по формуле где ΔU=U-U; ΔU=U-U; ν=ln 2/b; b=ln k. 3 ил.
Основные результаты: Способ измерения последовательного сопротивления базы диода, состоящий в том, что через диод пропускают прямой ток различной величины, измеряют падение напряжения на диоде при этих значениях прямого тока и определяют искомую величину последовательного сопротивления базы диода по известным формулам, отличающийся тем, что прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI, измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле где ΔU= U-U; ΔU= U-U; ν = ln 2/b; b= ln k.
Реферат Свернуть Развернуть

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества.

Как известно, одним из важных параметров полупроводниковых диодов является последовательное сопротивление базы, которое приводит к отклонению реальной вольт-амперной характеристики (ВАХ) диода от экспоненциальной функции в режиме больших (сравнимых с предельно допустимыми) токов (см. Степаненко И.П. Основы теории транзисторов и транзисторных схем. - М.: Радио и связь, 1977. - 488 с.).

Известен способ измерения сопротивления базы полупроводникового диода (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа, 1975. - 386 с.), состоящий в пропускании через диод постоянного прямого тока Iд различной величины в измерении падения напряжения Uд на диоде при заданных значениях прямого тока и построении ВАХ диода Iд=F(Uд). Сопротивление базы определяется по отклонению ВАХ диода от экспоненты, путем решения системы уравнений, составленных по результатам измерений при нескольких значениях прямого тока.

Сопротивление базы проявляется в отклонении ВАХ от экспоненты только при больших токах, близких к предельно допустимым для данного типа диодов, поэтому недостатком способа является большая погрешность измерения из-за разогрева диода большим постоянным током.

Известен способ определения сопротивления базы диода, заключающийся в подаче на диод импульса прямого тока и измерении скачка напряжения на диоде в момент переключения тока (см. Полупроводниковые диоды: под ред. Носова Р.И., Горюнова Н.Н. - М., Сов. радио, 1968. - 322 с. или Степаненко И.П. Основы теории транзисторов и транзисторных схем. - М.: Радио и связь, 1977. - 488 с.).

Недостатком является большая погрешность измерения, обусловленная опять же нагревом диода большим прямым током, а также тем, что для измерения относительно малого скачка напряжения (порядка нескольких десятков милливольт на уровне сотен милливольт прямого падения напряжения на диоде) используют, как правило, осциллограф.

Технический результат - повышение точности измерения последовательного сопротивления базы диода.

Технический результат достигается тем, что через диод пропускают прямой ток и измеряют падение напряжения на диоде, при этом прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов с большой скважностью и амплитудой I1, kI1, 2kI1, измеряют пиковое значение падений напряжения U1, U2, U3 на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле

где ΔU32=U3-U2; ΔU21=U2-U1; v=ln 2/b; b=ln k.

Если выбрать k=2, то v=ln 2/b=1 и формула заметно упрощается

Пиковое значение падений напряжения U1, U2, U3 на диоде определяют либо импульсным вольтметром, либо вольтметром переменного тока с известным типом преобразователя.

Сущность способа состоит в следующем. В режиме больших токов, когда падение напряжения на последовательном сопротивлении базы становится заметным, то есть сравнимым с падением напряжения на p-n-переходе диода. Строго говоря, отклонение ВАХ от экспоненциальной функции будет наблюдаться уже при тех токах, при которых падение напряжения на сопротивлении базы будет сравнимо с тепловым потенциалом , где kB - постоянная Больцмана, Tn - температура p-n-перехода диода, q - заряд электрона. Выражение для ВАХ диода с учетом последовательного сопротивления базы (см., например, Полупроводниковые диоды. Параметры, методы измерений. Под ред. Горюнова Н.Н. и Носова Ю.Р. Изд-во "Советское радио", 1968, 304 с. или Аронов В.Л., Федотов Я.А. Исследование и испытание полупроводниковых приборов. - М.: Высшая школа. - 1975. - 465 С.) принято записывать в виде:

где m - параметр неидеальности диода, I0 - ток насыщения.

Из (3) нетрудно выразить падение напряжения на диоде:

Если пропускать через диод постоянный ток большой величины, то в результате саморазогрева температура перехода будет возрастать и будет изменяться и тепловой потенциал, и значение тока насыщения I0 и для вычисления последовательного сопротивления базы необходимо знать эти значения. Для исключения разогрева перехода протекающим током предлагается попускать через диод импульсный ток с большой скважностью. Ясно, что длительность импульсов тока должна существенно превышать время нарастания напряжения для данного типа диодов. При скважности Q>100 приращение температуры перехода будет составлять доли кельвин во всем диапазоне рабочих токов; таким приращением температуры можно пренебречь и считать температуру p-n-перехода одинаковой при любой амплитуде импульсов тока.

Измерительные сигналы, формируемые при реализации способа, показаны на фиг.1. Измеряя амплитуду импульсов прямого падения напряжения на диоде при трех известных значениях амплитуды импульсов тока (не превышающих предельно допустимого значения для данного типа диодов), согласно (4) получим систему уравнений:

где a=ln(I1/I0), а параметр b=ln k.

Система легко решается методом последовательных исключений. Вычислив разности падений напряжений

для сопротивления базы диода rб получим выражение

где ν=ln 2/b.

Способ может быть реализован с помощью устройства, структурная схема которого показана на фиг.2. Устройство содержит две клеммы 1 и 2 для подключения контролируемого диода, устройство управления 3, управляемый генератор 4 импульсов тока, пиковый детектор 5, регистратор 6 и вычислитель 7; при этом клемма 1 соединена с общей шиной устройства, клемма 2 соединена с выходом генератора 4 импульсов тока и с входом пикового детектора 5, выход пикового детектора 5 соединен с входом регистратора 6, а выход регистратора с входом вычислителя 7, при этом выход устройства управления подключен к управляющим входам генератора импульсов тока и регистратора. Эпюры, поясняющие работу устройства, приведены на фиг.3.

Контролируемый диод подключают анодом к клемме 1, а катодом к клемме 2 устройства. По сигналу "Пуск" устройство управления 3 вырабатывает четыре управляющих импульса через равные интервалы времени T (фиг.3, а); по сигналу первого управляющего импульса У1 генератор импульсов тока вырабатывает последовательность импульсов тока с амплитудой I1 и скважностью Q (фиг.3, б), импульсы тока поступают в контролируемый диод, импульсное напряжение амплитудой U1, создаваемое на диоде импульсами тока (фиг.3, в), преобразуется пиковым детектором 5 в постоянное напряжение величиной U1 (фиг.3, г). По сигналу второго управляющего импульса У2 регистратор 6 преобразует напряжение U1 в цифровой код, который поступает в вычислитель 7, по этому же сигналу амплитуда импульсов тока, вырабатываемых генератором 4, увеличивается в k-раз и процедура преобразования повторяется: импульсное напряжение амплитудой U2 (фиг.3, в), создаваемое на диоде импульсами тока амплитудой kI1, преобразуется в постоянное величиной U2 (фиг.3, г).

По сигналу третьего управляющего импульса У3 регистратор 6 преобразует напряжение U2 в цифровой код, который поступает в вычислитель 7, по этому же сигналу амплитуда импульсов тока вырабатываемых генератором 4 устанавливается равной 2kI1 и процедура преобразования напряжения на диоде повторяется в третий раз: импульсное напряжение амплитудой U3 (фиг.3, в), создаваемое на диоде импульсами тока амплитудой 2kI1, преобразуется в постоянное величиной U3 (фиг.3, г). По сигналу четвертого управляющего импульса У4 регистратор 6 преобразует напряжение U3 в цифровой код, который поступает в вычислитель 7. По трем значениям напряжений U1, U2, U3 при известном значении тока I1 и коэффициента k вычислитель 7 вычисляет искомое значение сопротивления базы диода rб по формуле (1).

При выборе значений амплитуды тока I1 и коэффициента k для реализации способа следует руководствоваться следующими соображениями. Во-первых, необходимо соблюдать условие 2kI1<Imax, где Imax - предельно допустимый импульсный ток для данного типа диодов, во-вторых, при токе величиной I1 падение напряжения на сопротивлении базы должно быть заметным и составлять хотя бы 0,1…0,2 от падения напряжения на p-n-переходе; запишем это условие в виде rбоI1>0,1U1, где rбо - ориентировочное (ожидаемое) значение сопротивления базы для данного типа контролируемых диодов. Из этих двух условий следует, что коэффициент k необходимо выбирать из условия k<5rбоImax/U1. Поскольку априори значение сопротивления базы не известно даже ориентировочно, то выбор значений амплитуды тока I1 и коэффициента k можно осуществить по результатам предварительных измерений ВАХ, для которых можно использовать описанное выше устройство.

Способ измерения последовательного сопротивления базы диода, состоящий в том, что через диод пропускают прямой ток различной величины, измеряют падение напряжения на диоде при этих значениях прямого тока и определяют искомую величину последовательного сопротивления базы диода по известным формулам, отличающийся тем, что прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI, измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле где ΔU= U-U; ΔU= U-U; ν = ln 2/b; b= ln k.
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 259.
27.01.2013
№216.012.1ec2

Устройство для очистки жидкости от магнитных частиц

Изобретение относится к очистке технологических жидкостей на предприятиях металлургии и металлообрабатывающей промышленности, а также для очистки природных вод и касается устройства для очистки жидкости от магнитных частиц. Содержит емкость с патрубком, вертикальную перегородку между рабочей и...
Тип: Изобретение
Номер охранного документа: 0002473375
Дата охранного документа: 27.01.2013
20.08.2013
№216.012.61c1

Способ определения теплового сопротивления цифровых интегральных микросхем

Изобретение относится к измерительной технике. Способ предназначен для использования на выходном и входном контроле качества КМОП цифровых интегральных микросхем и оценки их температурных запасов. Выбранный в качестве источника тепла логический элемент микросхемы нагревают проходящим греющим...
Тип: Изобретение
Номер охранного документа: 0002490657
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6a98

Ультрафиолетовый светодиодный облучатель

Изобретение предназначено для отверждения ультрафиолетовым излучением полимерных материалов и может быть использовано, в частности, при изготовлении изделий цилиндрической формы и при ремонте поврежденных участков трубопроводов. Изобретение обеспечивает отверждение цилиндрических изделий из...
Тип: Изобретение
Номер охранного документа: 0002492939
Дата охранного документа: 20.09.2013
20.01.2014
№216.012.98b6

Способ определения теплового импеданса цифровых кмоп интегральных микросхем

Изобретение предназначено для использования на выходном и входном контроле качества цифровых КМОП интегральных микросхем и оценки их температурных запасов. Сущность: на входы одного или нескольких логических элементов контролируемой микросхемы подают последовательность высокочастотных...
Тип: Изобретение
Номер охранного документа: 0002504793
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a353

Способ измерения теплового импеданса полупроводниковых диодов с использованием полигармонической модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых...
Тип: Изобретение
Номер охранного документа: 0002507526
Дата охранного документа: 20.02.2014
20.05.2014
№216.012.c448

Приемник оптических излучений

Предлагаемое изобретение относится к области радиотехники и связи и может использоваться в оптических системах передачи информации, датчиках оптических излучений малой интенсивности, измерителях оптических сигналов в физике высоких энергий и т.п. Технический результат - повышение быстродействия...
Тип: Изобретение
Номер охранного документа: 0002516007
Дата охранного документа: 20.05.2014
10.07.2014
№216.012.dacb

Способ определения теплового импеданса сверхбольших интегральных схем - микропроцессоров и микроконтроллеров

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов. В контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружают...
Тип: Изобретение
Номер охранного документа: 0002521789
Дата охранного документа: 10.07.2014
20.10.2014
№216.013.00c3

Твердый смазочный материал для абразивной обработки

Настоящее изобретение относится к твердому смазочному материалу для абразивной обработки, содержащему стеариновую кислоту, дисульфид молибдена, при этом он дополнительно содержит ультрадисперсный порошок диатомита, пропитанный минеральным маслом с поверхностно-активными веществами и...
Тип: Изобретение
Номер охранного документа: 0002531587
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.041c

Устройство для обнаружения участников дорожно-транспортного происшествия

Изобретение относится к устройству для обнаружения участников дорожно-транспортного происшествия (ДТП). Устройство содержит установленную между кузовом и передним бампером автотранспортного средства структуру, разделяющуюся в процессе совершения ДТП на отдельные элементы. Элементы содержат...
Тип: Изобретение
Номер охранного документа: 0002532450
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04c6

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, алюминия, кремния, молибдена и железа при их содержании в...
Тип: Изобретение
Номер охранного документа: 0002532620
Дата охранного документа: 10.11.2014
Показаны записи 1-10 из 430.
10.01.2013
№216.012.1a74

Воздушная линия электропередачи

Изобретение относится к области электроэнергетики, в частности к вопросу удаления гололедных отложений с проводов. Технический результат заключается в упрощении конструкции устройства, повышении его эффективности и автоматизации процесса, расширении областей и условий применения. Линия снабжена...
Тип: Изобретение
Номер охранного документа: 0002472264
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a75

Распорка для проводов воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для механического удаления гололедных отложений с проводов и ограничения колебаний в опасных режимах. Технический результат заключается в повышении эффективности сброса гололедных отложений с проводов и рассеяния энергии их...
Тип: Изобретение
Номер охранного документа: 0002472265
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a86

Реверсивный электропривод постоянного тока

Изобретение относится к электротехнике, к электроприводу с двигателем постоянного тока и может быть использовано для плавного пуска, реверса, динамического торможения. Техническим результатом предлагаемого устройства является снижение напряжения на ключах и коммутационных перенапряжений,...
Тип: Изобретение
Номер охранного документа: 0002472282
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a87

Магнитно-вентильный преобразователь для электропривода постоянного тока

Изобретение относится к электротехнике, к электроприводу с двигателем постоянного тока и может быть использовано для плавного пуска, реверса. Техническим результатом предлагаемого устройства является снижение напряжения на ключах и коммутационных перенапряжений, возникающих в процессе работы,...
Тип: Изобретение
Номер охранного документа: 0002472283
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.1ec2

Устройство для очистки жидкости от магнитных частиц

Изобретение относится к очистке технологических жидкостей на предприятиях металлургии и металлообрабатывающей промышленности, а также для очистки природных вод и касается устройства для очистки жидкости от магнитных частиц. Содержит емкость с патрубком, вертикальную перегородку между рабочей и...
Тип: Изобретение
Номер охранного документа: 0002473375
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2043

Карниз крыши здания

Изобретение относится к области строительства, а именно к карнизу крыши здания. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши за счет исключения образования и падения сосулек крупных размеров с карниза крыши. Карниз крыши с консольным свесом, в...
Тип: Изобретение
Номер охранного документа: 0002473760
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.231a

Способ обработки резанием

Способ предназначен для обработки резанием поверхности заготовки, используемой далее на операциях технологического процесса в качестве технологической базы, и включает обработку участков, которые на последующих операциях предназначены для непосредственного контактирования с установочными...
Тип: Изобретение
Номер охранного документа: 0002474488
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.242f

Способ работы открытой системы теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в открытых системах теплоснабжения. Способ работы открытой системы теплоснабжения, по которому сетевую воду готовят на ТЭЦ и по подающему трубопроводу теплосети через тепловой пункт направляют в трубопроводы систем...
Тип: Изобретение
Номер охранного документа: 0002474765
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.2766

Консольный свес кровли

Изобретение относится к области строительства, а именно к консольному свесу кровли здания. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Консольный свес кровли с автоматическим удалением слоя снега, льда и сосулек на свесе снабжен механически...
Тип: Изобретение
Номер охранного документа: 0002475606
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2768

Консольный свес кровли

Изобретение относится к области строительства, а именно к консольному свесу кровли жилых и производственных зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности кровли. Консольный свес кровли, включает прикрепленный к нему шарнирно сбивающий орган,...
Тип: Изобретение
Номер охранного документа: 0002475608
Дата охранного документа: 20.02.2013

Похожие РИД в системе

+ добавить свой РИД