×
20.02.2015
216.013.29fc

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области деформационно-термической обработки среднеуглеродистых низколегированных сталей. Для повышения ударной вязкости сталей, работающих при низких температурах, осуществляют закалку и пластическую деформацию путем ротационной ковки со степенью относительной деформации за проход 5-25% в интервале температур 600-500°C. Ротационную ковку проводят в один или более этапов с суммарной истинной степенью деформации не менее ε~1,2. В случае если ротационную ковку проводят более чем за один этап, после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C. 3 ил., 2 табл., 5 пр.
Основные результаты: Способ обработки среднеуглеродистых низколегированных сталей, включающий закалку с температуры выше Ac, измельчение микроструктуры посредством пластической деформации, отличающийся тем, что пластическую деформацию осуществляют путем ротационной ковки со степенью относительной деформации за проход 5-25% при температуре 600-500°C, при этом ротационную ковку проводят в один или более этапов с суммарной истинной степенью деформации ε не менее 1,2, причем при проведении ротационной ковки более чем за один этап после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C.

Изобретение относится к области деформационно-термической обработки и может быть использовано для повышения ударной вязкости среднеуглеродистых низколегированных сталей, работающих при низких температурах. К деталям машин и механизмов, работающих в условиях Крайнего Севера, предъявляются высокие требования по ударной вязкости при низких температурах.

Известен способ повышения ударной вязкости при низких температурах в среднеуглеродистых сталях путем термической обработки по патенту РФ №2178003, МПК C21D 1/28, включающий нормализацию и отпуск при 655-750°C в течение 120-300 мин, охлаждение на воздухе и повторную нормализацию с выдержкой 10-60 мин. Изготовленные по данному способу изделия во всем интервале режимов термообработки показали прирост показателя вязкости разрушения в 2-4 раза при температуре -60°C при незначительном увеличении уровня прочностных свойств по сравнению с традиционной термической обработкой.

Другой российский патент, обеспечивающий рост вязкостных свойств в 2-4 раза, - РФ №2430978, МПК C21D 9/46, - направлен на улучшение свойств низкоуглеродистой стали. Данный способ производства включает выплавку низкоуглеродистой низколегированной стали, получение заготовки, предварительную и окончательную деформации в реверсивном режиме, контролируемое охлаждение проката, отпуск и окончательное охлаждение на воздухе до температуры окружающей среды. Контролируемое охлаждение проката осуществляли с температуры конца деформации, находящейся в интервале (Ac3+20)-(Ac3+40)°C, до температуры 530-570°C со скоростью 30-40°/с, а отпуск проводили при температуре 665-695°C с выдержкой 0,2-4,0 мин/мм. В результате полученный прокат обладал в 2-4 раза большей ударной вязкостью при -40°C, при некоторой потере прочности и пластичности по сравнению со способом, включающем охлаждение проката при температуре 760-900°C со скоростью 10-60 град/с до температуры 300-20°C, повторный нагрев до температуры 590-740°C с выдержкой 0,2-3,0 мин/мм и окончательное охлаждение на воздухе до температуры окружающей среды.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ обработки, описанный в статье «Inverse temperature dependence of toughness in ultrafine grain-structure steel» авторами Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, включающий в себя закалку с температуры выше Ac3, отпуск при температуре 500-600°C и измельчение микроструктуры посредством пластической деформации на истинную степень 1,7 при температуре, аналогичной температуре отпуска. Данный набор операций получил название tempforming. Изготовленная по описанному способу заготовка показывает существенный рост прочности, пластичности и ударной вязкости, в том числе при низких температурах.

Задачей изобретения является расширение арсенала способов обработки среднеуглеродистых низколегированных сталей с достижением повышенных показателей ударной вязкости при низких температурах.

Технический результат, достигаемый при осуществлении изобретения, заключается в измельчении микроструктуры и формировании вытянутых вдоль оси деформации ферритных зерен с дисперсно распределенными карбидами, за счет чего повышаются показатели ударной вязкости среднеуглеродистых низколегированных сталей при низких температурах, а также наблюдается рост прочности и пластичности.

Поставленная задача достигается тем, что в предложенный способ, включающий закалку с температуры выше Ac3 и измельчение микроструктуры стали посредством пластической деформации заготовки, внесены новые признаки: пластическую деформацию заготовки из среднеуглеродистой низколегированной стали осуществляют путем ротационной ковки со степенью относительной деформации за проход 5-25% в интервале температур 600-500°C с суммарной истинной степенью деформации не менее ε~1,2, в 1 или более этапов с суммарной истинной степенью деформации не менее ε~1,2, при этом, в случае если ротационную ковку проводят более чем за 1 этап, после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C.

Выбор степени деформации обусловлен следующими причинами. С точки зрения экономической целесообразности технологического процесса является необоснованным применение обработки со степенью относительной деформации за проход менее 5%. Относительная деформация при 500°C за проход более 25% приводит к появлению трещин, что подтверждается в ходе эксперимента на осадку закаленной стали 40ХГНМ. Вследствие недостаточной технологической пластичности среднеуглеродистой стали деформация при температуре ниже 500°C является нецелесообразной. Выбор верхнего лимита температуры деформации на уровне 600°C в свою очередь обусловлен с одной стороны укрупнением ферритных зерен вследствие интенсивной рекристаллизации и коагуляции карбидов при повышении температуры, а с другой - разогревом материала в процессе ротационной ковки - температура деформирования не должна превышать температуру Ac1.

Пластическая деформация при 500°C является предпочтительной для получения более мелкозернистой структуры, чем в случае деформации при 600°C. Однако для прутков большого диаметра, например, если начальный диаметр составляет 35 мм, как далее показано в примере 4, при проведении пластической деформации при 500°C наблюдается наличие значительной неоднородности пластической деформации по сечению. В этом случае проведение первоначальной деформации при температуре 600°C обеспечивает формирование равномерной по сечению ультрамелкозернистой структуры вследствие активного прохождения динамической рекристаллизации. Для более интенсивного измельчения микроструктуры и соответственно обеспечения роста значений прочностных характеристик возможно разделение обработки на несколько этапов и проведение последующих этапов деформации с повторным нагревом на температуру ниже 600°C.

Необходимо отметить, что величина ударной вязкости заготовок, которые получены ротационной ковкой по предложенному способу, существенно выше, чем таковая у заготовок после закалки и высокого отпуска: работа удара образцов при температуре -40 и -65°C после ротационной ковки в 9-11 раз выше работы удара образцов после закалки и отпуска при температуре, аналогичной температуре деформации.

В процессе нагрева и прогрева заготовки до температуры деформации сталь, пребывающая первоначально в закаленном состоянии, отпускается. Выделяющиеся карбидные частицы служат для интенсификации процессов измельчения зерна за счет обеспечения барьеров для миграции границ. Стоит отметить, применение операции отпуска перед ротационной ковкой привело бы к более полному выделению карбидов и некоторому росту их размера, однако включение данной операции в цикл производства прутка является нецелесообразным в виду повышения временных затрат.

Графические материалы.

Фиг. 1. Фотографии образцов стали 40ХГНМ после закалки и осадки при температуре Т=500°C на степень 25% (а) и 50% (б), на фиг. (б) видны трещины, что подтверждает выбор степени деформации за проход.

Фиг. 2. Микроструктура стали 40ХГНМ после обработки по режиму примера 4 в поперечном сечении: а - центр, б - край. Изображения получены с помощью растрового электронного микроскопа FEI Quanta-600.

Фиг. 3. Фотографии микроструктуры стали 40ХГНМ после обработки по режиму примера 5 в поперечном (а) и продольном (б) сечениях. Изображения получены с помощью просвечивающего электронного микроскопа JEOL JEM 2100.

Сущность предложенного технического решения поясняется примерами конкретного выполнения.

Пример 1.

Исходная заготовка - пруток среднеуглеродистой стали 40ХГНМ, содержащей масс.%: C - 0,37-0,43; Cr - 0,6-0,9; Mn - 0,5-0,8; Ni - 0,7-1,1; Mo - 0,15-0,25; Si - 0,17-0,37; S - до 0,035; P - до 0,035 - размером 65×500 мм. Исходная микроструктура - зерна феррита и колонии перлита. Критические температуры для данной стали: AC3=761°C, AC1=776°C.

Заготовку нагревают в печи до температуры 840°C, т.е. выше AC3, и выдерживают при этой температуре до образования однородного твердого раствора аустенита. Затем заготовку закаливают для предотвращения перлитного превращения. В результате закалки образуется мартенсит.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 4-6 мм на диаметр: ⌀65→⌀59→⌀54→⌀49→⌀44→⌀39→⌀35, истинная степень деформации ε~1,2. Во время нагрева и деформации происходит распад мартенсита с образованием ферритно-цементитной смеси, в ходе деформации образуется фрагментированная структура, в феррите развивается динамическая рекристаллизация. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура представляет собой мелкие зерна феррита с размером ~710 нм, зеренно-субзеренная структура имеет размер ~420 нм, а дисперсно распределенные частицы карбидов ~45 нм.

Механические свойства стали приведены в таблице 1.

Пример 2.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 1.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 4 мм на диаметр: ⌀35→⌀31→⌀27→⌀23 соответственно, истинная степень деформации ε~2,2. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура заготовки представляет собой зерна феррита со средним размером зерен ~600 нм, средний размер зеренно-субзеренной структуры равен ~380 нм, а карбидов ~55 нм. Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 3.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 2.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 3-5 мм на диаметр: ⌀23→⌀18→⌀15 соответственно, истинная степень деформации ε~2,9. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. Заготовка после деформации имеет следующие характеристики: средний размер зерен феррита ~580 нм, средний размер зеренно-субзеренной структуры ~460 нм, а карбидов ~75 нм.

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 4.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 1.

Далее заготовку нагревают в печи до температуры 500°C и подвергают деформации на ротационно-ковочной машине с шагом 3-5 мм на диаметр: ⌀35→⌀33→⌀31→⌀27→⌀21, истинная степень деформации ε~2,2. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации в структуре заготовки наблюдается значительная неоднородность по сечению. В центральной области структура представляет собой зерна феррита с размером ~705 нм, зеренно-субзеренная структура имеет размер ~380 нм, а дисперсно распределенные частицы карбидов ~50 нм (фиг. 2).

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Пример 5.

Для данного примера исходной являлась заготовка, термическая и деформационно-термическая обработка которой подробно описана в примере 4.

Далее заготовку нагревают в печи до температуры 600°C и подвергают деформации на ротационно-ковочной машине с шагом 3 мм на диаметр: ⌀21→⌀18→⌀15, истинная степень деформации ε~2,9. По окончании деформации заготовку охлаждают на воздухе до комнатной температуры. После деформации структура первой заготовки представляет собой зерна феррита с размером ~500 нм, зеренно-субзеренная структура имеет размер ~400 нм, а дисперсно распределенные частицы карбидов ~55 нм (фиг. 3).

Механические свойства стали приведены в таблице 1, а значения работы удара при различных температурах испытания - в таблице 2.

Таблица 1
Механические свойства стали 40ХГНМ после различных режимов ротационной ковки в сравнении со свойствами стали, обработанной по известному способу и прототипу
№ примера Условия обработки стали KV, Дж σ0,2, МПа σB, МПа δ, %
- Закалка 840°C, отпуск 600°C 1 ч 57 840 980 15
прототип Закалка, отпуск 500°C 1 ч 14 1470 1770 10
прототип Tempforming при 500°C, ε~1,7 226 1840 1850 15
1 T=600°C, ε~1,2 143 980 1020 17,7
2 Т=600°C, ε~2,2 212 1030 1060 16,1
3 Т=600°C, ε~2,9 223 830 900 22
4 Т=500°C, ε~2,2 158 1090 1100 16,7
5 Т=500°C, ε~2,9 235 960 1000 19
Где KV - работа удара, Дж; σ0,2 - предел текучести, МПа; σB - предел прочности, МПа; δ - относительная деформация, %.

Таблица 2
Значения работы удара в области низких температур в стали, обработанной различными режимами по предложенному способу, в сравнении со свойствами стали, обработанной по известному способу и прототипу
№ примера Условия обработки стали Температура испытания, °C
+20 -20 -40 -65 -100
Работа удара, Дж
- Закалка 840°C, отпуск 600°C 1 ч 57 37 30 26 18
прототип Закалка, отпуск 500°C 1 ч 14 14 - 12 7
прототип Tempforming при 500°C, ε~1,7 226 291 - 285 88
2 Т=600°C, ε~2,2 212 219 198 267 183
3 Т=600°C, ε~2,9 223 258 270 217 261
4 Т=500°C, ε~2,2 158 146 169 206 122
5 Т=500°C, ε~2,9 235 278 202 280 291

Таким образом, поставленная задача по расширению арсенала способов обработки среднеуглеродистых низколегированных сталей с достижением повышенных показателей ударной вязкости при низких температурах решена.

Способ обработки среднеуглеродистых низколегированных сталей, включающий закалку с температуры выше Ac, измельчение микроструктуры посредством пластической деформации, отличающийся тем, что пластическую деформацию осуществляют путем ротационной ковки со степенью относительной деформации за проход 5-25% при температуре 600-500°C, при этом ротационную ковку проводят в один или более этапов с суммарной истинной степенью деформации ε не менее 1,2, причем при проведении ротационной ковки более чем за один этап после каждого этапа охлаждают заготовку до комнатной температуры и осуществляют повторный нагрев до температуры в интервале 600-500°C.
СПОСОБ ОБРАБОТКИ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ
СПОСОБ ОБРАБОТКИ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ
СПОСОБ ОБРАБОТКИ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 41-48 из 48.
01.03.2019
№219.016.d094

Производное 3-(2,2,2-триметилгидразиний)пропионата - никотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее эндотелиопротекторной активностью

Изобретение относится к области органической хомии, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата-никотинат 3-(2,2,2-триметилгидразиний)пропионат калия (CH3)3NNHCH2CH2COOKRCOO где R=, обладающему эндотелиопротекторной активностью. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002465268
Дата охранного документа: 27.10.2012
19.04.2019
№219.017.31f7

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний) пропионата - бромникотинату 3-(2,2,2-триметилгидразиний) пропионата калия, (СН)NНСНСНСООКRСОО где , обладающему повышенной противоишемической...
Тип: Изобретение
Номер охранного документа: 0002458690
Дата охранного документа: 20.08.2012
19.04.2019
№219.017.31f8

Производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно - к новому химическому соединению, производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, (CH)NNHCHCHCOOKRCOO, где , обладающее противоишемической активностью. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002458054
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3216

Производное 3-(2,2,2-триметилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - глицинату 3-(2,2,2-триметилгидразиний) пропионата калия, (CH3)3NNHCH2CH2COOKRCOO где , обладающему противоишемической активностью. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002457198
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3217

Производное 3-(2,2,2-триметилгидразиний)пропионата - 5- гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, (CH3)3NHCH2CH2COOKRCOO, где обладающее противоишемической активностью. Технический...
Тип: Изобретение
Номер охранного документа: 0002457202
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3421

Способ получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий

Изобретение предназначено для оптимизации технологического процесса сверхпластической формовки изделий сложной формы. Способ включает отливку слитка, получение из него заготовки равноканальным угловым прессованием с противодавлением. Сокращение продолжительности формообразующих операций,...
Тип: Изобретение
Номер охранного документа: 0002465365
Дата охранного документа: 27.10.2012
29.06.2019
№219.017.9fc2

Способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания

Изобретение относится к медицине и описывает способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания, включающий выделение ДНК из периферической венозной крови, отличающийся тем, что проводят анализ полиморфизма гена рецептора фактора...
Тип: Изобретение
Номер охранного документа: 0002458349
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.a1af

Способ прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом

Изобретение относится к области медицины и касается способа прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом. Сущность способа заключается в том, что выделяют ДНК из...
Тип: Изобретение
Номер охранного документа: 0002461830
Дата охранного документа: 20.09.2012
Показаны записи 41-50 из 50.
10.08.2015
№216.013.6aa4

Способ получения микрокапсул лозартана калия в альгинате натрия

Способ получения микрокапсул лозартана калия в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Растворяют лозартан калия в хлороформе и диспергируют полученную смесь в присутствии препарата E472c при перемешивании 1000 об/с в суспензию альгината...
Тип: Изобретение
Номер охранного документа: 0002558855
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa5

Способ получения микрокапсул аминокислот в конжаковой камеди

Способ получения микрокапсул аминокислот в конжаковой камеди может быть использован в фармакологии, фармацевтике, медицине. Суспензию аминокислоты в диметилсульфоксиде диспергируют в суспензию конжаковой камеди в бутиловом спирте в присутствии препарата E472с при перемешивании 1300 об/сек....
Тип: Изобретение
Номер охранного документа: 0002558856
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa7

Способ получения микрокапсул аминокислот в ксантановой камеди

Изобретение относится к способу получения микрокапсул аминокислот в ксантановой камеди. Указанный способ характеризуется тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при...
Тип: Изобретение
Номер охранного документа: 0002558859
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.82d6

Способ определения жевательной эффективности пародонта зубов

Способ относится к медицине, а именно к стоматологии, и предназначен для использования при протезировании для предотвращения осложнений, связанных с перегрузкой опорных тканей пародонта. Проводят рентгенологическое исследование пациента с дефектом целостности зубной дуги. Определяют значение...
Тип: Изобретение
Номер охранного документа: 0002565097
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.840d

Способ получения микрокапсул аминокислот в альгинате натрия

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002565408
Дата охранного документа: 20.10.2015
27.03.2016
№216.014.c5ba

Способ прогнозирования риска развития преэклампсии

Изобретение относится к области медицины, а именно к способу прогнозирования вероятности риска возникновения преэклампсии у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Сущность способа состоит в том, что осуществляют забор венозной крови,...
Тип: Изобретение
Номер охранного документа: 0002578425
Дата охранного документа: 27.03.2016
25.08.2017
№217.015.a093

Способ термомеханической обработки литых (γ+α2)- интерметаллидных сплавов на основе алюминида титана γ-tial

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике. Способ термомеханической обработки...
Тип: Изобретение
Номер охранного документа: 0002606685
Дата охранного документа: 10.01.2017
19.01.2018
№218.016.0623

Жаропрочный высокоэнтропийный сплав

Изобретение относится к жаропрочным высокоэнтропийным сплавам и может быть использовано для производства элементов и деталей конструкций, работающих в условиях высоких температур в авиационных и ракетных двигателях. Сплав AlNbTiVZr, где х принимает значения от 0,1 до 0,25, имеет следующее...
Тип: Изобретение
Номер охранного документа: 0002631066
Дата охранного документа: 18.09.2017
12.08.2019
№219.017.bea9

Деформируемый высокоэнтропийный сплав для высокотемпературных применений

Изобретение относится к области металлургии, а именно к деформируемым высокоэнтропийным сплавам, и может быть использовано для производства конструкций, работающих в условиях высоких температур в газотурбинных двигателях. Деформируемый высокоэнтропийный сплав TiNbCrV имеет следующее соотношение...
Тип: Изобретение
Номер охранного документа: 0002696799
Дата охранного документа: 06.08.2019
27.05.2023
№223.018.71d4

Способ изготовления лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана

Изобретение относится к металлургии, а именно к обработке давлением интерметаллидных сплавов на основе орторомбического алюминида титана, и может быть использовано в аэрокосмической промышленности для получения изготовления деталей газотурбинных двигателей с регламентированной структурой и...
Тип: Изобретение
Номер охранного документа: 0002790704
Дата охранного документа: 28.02.2023
+ добавить свой РИД