×
27.01.2015
216.013.2069

Результат интеллектуальной деятельности: СПОСОБ СЕЙСМИЧЕСКОГО МОНИТОРИНГА В ПРОЦЕССА РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ УГЛЕВОДОРОДОВ НА АКВАТОРИЯХ

Вид РИД

Изобретение

№ охранного документа
0002539745
Дата охранного документа
27.01.2015
Аннотация: Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных трещин и размещение эксплуатационных и нагнетательных скважин. Размещают на дне акватории над месторождением стационарные сейсмокосы, регистрируют сейсмотрассы с упругими колебаниями от искусственных источников и контролируют процесс разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс. При этом сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин. В процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта. Технический результат - повышение точности данных мониторинга. 1 з.п. ф-лы.

Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на морском шельфе.

Известен способ сейсмического мониторинга процесса разработки месторождения углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс [1].

Известно, что эффективность разработки месторождений нефти и газа, особенно трудноизвлекаемых запасов из низкопроницаемых коллекторов, зависит от точности и детальности трехмерных построений геологической, гидрогеологической и геомеханической моделей среды. При построении последних особенно важное значение играет ориентация субвертикальных трещин, по которым происходит ускоренное перемещение флюидов в процессе жизни месторождений и их разработки. Наиболее достоверные и точные модели среды строятся по данным трехмерной сейсморазведки (3D), результатам геофизических исследований поисково-разведочных скважин и петрофизического анализа керна.

При современной разведке и разработке месторождений нефти и газа на акваториях повсеместно применяется сейсморазведка 3D на этапе до бурения поисково-разведочных скважин или после бурения первой успешной скважины (последнее часто практиковалось в России). В подавляющем большинстве случаев сейсморазведка 3D реализуется путем возбуждения упругих колебаний группами пневматических источников и их регистраци несколькими (до 20) многоканальными приемными сейсмическими устройствами (сейсмокосами), непрерывно перемещающимися в водной толще вместе с судном. Эволюционное развитие сейсморазведки 3D, ориентированное на повышение ее детальности, достоверности и эффективности, достигается расширением частотного диапазона возбуждаемых и регистрируемых колебаний, применением все более длинных сейсмокос, увеличением их разноса (расстояния между крайними сейсмокосами), уменьшением расстояния между приемниками упругих колебаний в сочетании с увеличением количества регистрирующих каналов. Однако даже широкие (до 1500 м) разносы сейсмокос не позволяют осуществлять полноценные миграционные преобразования и изучать анизотропные свойства среды за счет ущербной узкоазимутальной системы наблюдений, реализуемой при применении традиционной односудовой сейсморазведки 3D (Narrow Azimuth). Для уменьшения или практически полного устранения указанного недостатка на акваториях применяются сложные системы наблюдений, расширяющие азимут наблюдений:

1) многократная отработка площади под разными углами профилирования (MAZ - Multi Azimuth);

2) несколько параллельно идущих судов с источниками колебаний и сейсмокосами (WAZ - Wide Azimuth);

3) комбинация двух вышеописанных подходов (RAZ - Rich Azimuth);

4) кольцевое профилирование (FAZ - Full Azimuth).

Главными недостатками перечисленных технологий, используемых в том числе при реализации известного способа, является значительный рост стоимости работ, сложность и дороговизна повторных 3D исследований, необходимых для осуществления сейсмического мониторинга, позволяющего изучить пространственные и временные изменения флюидонасыщения в разрабатываемых залежах (сейсморазведка 4D). Применение на акваториях 3D технологии ОВС (Ocean Bottom Cable), пространственная система наблюдений которой близка к полноазимутальной сейсморазведке 3D, применяемой на суше, позволяет получить наиболее качественные результаты.

Классическая технология 4D подразумевает комплексную обработку старых (желательно до начала разработки месторождения) и новых данных 3D, полученных по одинаковым системам наблюдений с максимально приближенными параметрами возбуждения и регистрации колебаний [1]. В связи с тем что на большинстве разрабатываемых месторождений первая сейсморазведка 3D проводилась с применением традиционной односудовой технологии, во многих случаях принимается решение о повторении аналогичных наблюдений 3D. Таким образом, недропользователи, идя на применение инновационных исследований 4D, являются заложниками традиционных технических средств 3D со всеми их недостатками, отмеченными выше. Такая ситуация неоднократно имела место за рубежом и сложилась в единственном случае проведения сейсморазведки 4D в России в 2010 г. на Астохском участке Пильтун-Астохского месторождения по проекту Сахалин-2 Sakhalin Energy [2]. Улучшить сложившуюся ситуацию можно только решением о раннем применении современных методик 4D, подразумевающих применение донных сейсмокос или автономных станций.

С применением стационарных донных сейсмокос с четырехкомпонентной регистрацией связаны наиболее прогрессивные технологии сейсмического мониторинга процесса разработки месторождений. При этом в ряде случаев сейсмокосы устанавливаются на все время разработки месторождения (PRSM - Permanent Seismic Reservoir Monitoring, LoFS - Life of Field Seismic) и передают регистрируемые колебания, возбуждаемые с периодически (от трех месяцев до двух лет) приходящего судна, по кабелям на ближайшую платформу или по радиоканалу в пункт сбора и обработки данных [1]. Такое оборудование было установлено и успешно применяется за рубежом на ряде месторождений, включая норвежское Valhall в Северном море (с 2003 г. - впервые в мире) и Jubarte (с 2010 г.) на континентальном склоне Бразилии в бассейне Кампос (глубина воды до 1650 м). Однако в большинстве случаев оно устанавливалось после начала разработки месторождения, в частности через 21 год на месторождении Valhall (компания BP) в Северном море, когда значительная часть углеводородов уже извлечена и получаемая при сейсморазведке 4D информация может повлиять только на размещение и бурение новых эксплуатационных (включая водогазонагнетательных) скважин [1]. На разрабатываемом с 1982 г. месторождении Valhall в 2003 г. были установлены 120 км сейсмокос PRSM, после чего до 2012 г. было выполнено 15 повторных съемок, позволивших оптимизировать процесс разработки, поднять уровень добычи в 2004 г. более чем на 20% и продлить жизнь месторождения до 2050 г.

Технической задачей описываемого изобретения является повышение эффективности и безопасности разработки месторождения.

Поставленная техническая задача решается за счет того, что в способе сейсмического мониторинга процесса разработки месторождения углеводородов на акваториях, включающем проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс, сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин, в процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта, причем в процессе гидроразрыва пласта регистрируют микросейсмические колебания, определяют трехмерные координаты их источников и дополнительно уточняют трехмерную модель резервуара и ориентацию системы трещин.

Сущность изобретения заключается в том, что реализуют сейсмический мониторинг процесса разработки месторождения углеводородов на акваториях на начальной стадии его освоения. Это позволяет получать детальную информацию о пространственных изменениях анизотропных свойств среды в разрабатываемой залежи с прогнозом ориентации основных систем субвертикальных трещин для уточнения трехмерной гидрогеологической и геомеханической моделей залежи, оптимизировать размещение вертикальных, наклонных и горизонтальных стволов эксплуатационных скважин и направлений вскрытия пластов при их перфорации, а также выбор мест гидравлического разрыва пласта (ГРП). Технология подразумевает установку на дно стационарных сейсмокос до начала бурения эксплуатационных скважин. Места размещения на дне сейсмокос, количество линий и пунктов приема упругих колебаний задают с учетом экономических соображений, но не менее чем необходимо для проведения сейсмического мониторинга 4D.

Сейсмокосами осуществляется периодическая регистрация упругих колебаний (сейсмических волновых полей), возникающих в процессе разрушения породы при бурении стволов первой и последующих скважин в пласте-резервуаре (микросейсмы). При обработке рассчитываются амплитудно-частотные спектры (АЧС) и другие динамические характеристики регистрируемых волновых полей, выбираются АЧС сейсмических каналов, равноудаленных от точки проекции текущего забоя скважины на дно, для частот максимальных значений амплитуд АЧС строятся индикатрисы (азимутальные зависимости) амплитуд фиксированных частот АЧС, при интерпретации которых на основе выявления экстремумов определяют ориентацию основных систем субвертикальных трещин [3].

Возможность получения сейсмических записей волновых полей, возбуждаемых долотом, пригодных для изучения анизотропных свойств среды, доказана в работе [4] на примере полевого эксперимента по изучению околоскважинного пространства в скважине Скворцовская-1 на северном борту Днепрово-Донецкой впадины. Результаты данного эксперимента хорошо согласуются с данными ультразвукового прозвучивания образцов керна. Получаемая информация об анизотропных свойствах среды по данным прямых волн, возбуждаемых долотом в призабойной зоне, отличается большей точностью и корректностью по сравнению с отраженными волнами, возбуждаемыми и регистрируемыми в водной толще или вблизи поверхности земли. Это обусловлено тем, что первые проходят систему субвертикальных трещин до пунктов приема по одному лучу под одним углом к системе трещин, а вторые - по двум лучам (падающему и отраженному) под двумя углами.

Использование описываемого способа за счет оперативного получения информации об ориентации систем трещин в условиях ”реального времени” позволяет повысить эффективность и безопасность разработки месторождений путем возможной коррекции ориентации горизонтального ствола скважины, а после завершения бурения скважины выбирать оптимальные места для перфорации и многостадийного ГРП на основе выбора зон с наиболее выраженной анизотропией динамических характеристик зарегистрированных волновых полей. Правильность определения ориентации систем трещин и эффективность каждого ГРП подтверждается при обработке микросейсм, возбуждаемых в процессе ГРП [5, 6] и регистрируемых теми же донными сейсмокосами.

Источники информации

1. Smit F., Ligtendag М., Wills P., Calvert R. Towards Affordable Permanent Seismic Reservoir Monitoring Using the Sparse OBC Concept. Exploration and production: the oil and gas review, 2006, p.56-62.

2. Ампилов Ю.П., Батурин Д.Г. Новейшие технологии сейсмического мониторинга 4D при разработке морских месторождений нефти и газа. Технологии сейсморазведки, №2, 2013, С.31-36.

3. Богоявленский В.И., Урупов А.К., Будагова Т.А., Добрынин С.В. Анизотропные свойства осадочного чехла континентального шельфа. Газовая промышленность, №7, 1997, С.16-18.

4. Бланк A.M., Урупов А.К., Жуков A.M. Возможность контроля природно-техногенных процессов в геологической среде методами сейсморазведки при бурении глубоких скважин. В сб.: ”Проблемы техногенного изменения среды и охраны недр в горнодобывающих регионах”. Пермь, 1991, С.70-71.

5. Бутула К.К., Верещагин С.А. Разработка трудноизвлекаемых запасов - интеграция данных для заканчивания скважин с целью оптимальной разработки месторождений. Oil&Gas Journal Russia, №7 (73), 2013, С.42-43.

6. Александров С.И., Мишин В.А., Буров Д.И. и др. Применение микросейсмического мониторинга для контроля технологических рисков ГРП. Нефтесервис, №1 (21), 2013, С.50-52.

Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
10.08.2015
№216.013.6a8e

Способ повышения добычи углеводородов путем ограничения выноса песка в нефтяных и газовых скважинах

Изобретение относится к области добычи нефти и газа и может быть использовано для снижения выноса песка в скважину. Технический результат - увеличение межремонтного пробега работы скважины и повышение добычи углеводородов. В способе повышения добычи углеводородов путем ограничения выноса песка...
Тип: Изобретение
Номер охранного документа: 0002558831
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.83d9

Способ раздельного измерения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений методами ИК-спектрометрии. Содержание нефти и газового конденсата в продукции нефтегазоконденсатных скважин определяют...
Тип: Изобретение
Номер охранного документа: 0002565356
Дата охранного документа: 20.10.2015
27.03.2016
№216.014.db98

Способ подготовки месторождения углеводородов к освоению

Изобретение относится к области освоения месторождений углеводородов и может быть использовано для подготовки потенциального осваиваемого месторождения к разведочному и эксплуатационному бурению. Технический результат - предотвращение аварий при бурении поисково-разведочных и/или...
Тип: Изобретение
Номер охранного документа: 0002579089
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.8994

Способ сейсмического мониторинга процесса освоения месторождения углеводородов на акваториях

Изобретение относится к области геофизики и может быть использовано для уточнения строения месторождения углеводородов на акваториях и повышения эффективности процесса его освоения. Предложен способ сейсмического мониторинга процесса освоения месторождения углеводородов на акваториях,...
Тип: Изобретение
Номер охранного документа: 0002602735
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
20.01.2018
№218.016.1e41

Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра

Изобретение относится к спектральной измерительной технике. Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра содержит внешний источник излучения, конденсорную систему, первое плоское зеркало, сферическое зеркало. В качестве регистрирующей системы использована...
Тип: Изобретение
Номер охранного документа: 0002640751
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.225d

Скважинное оборудование для обработки призабойной зоны пласта

Изобретение относится к области добычи нефти и газа и может быть использовано при добыче сланцевой нефти с применением технологии гидравлического разрыва пласта. Скважинное оборудование для обработки призабойной зоны пласта состоит из струйного насоса, колонны насосно-компрессорных труб (НКТ),...
Тип: Изобретение
Номер охранного документа: 0002642198
Дата охранного документа: 24.01.2018
05.07.2019
№219.017.a5ec

Способ раздельного определения содержания нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава жидкой углеводородной продукции и касается способа определения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин. Способ осуществляется с помощью ИК Фурье - спектрометра высокого разрешения методом PLS и...
Тип: Изобретение
Номер охранного документа: 0002693566
Дата охранного документа: 03.07.2019
Показаны записи 21-27 из 27.
09.06.2019
№219.017.7cc8

Способ получения жидкости для глушения газовых и нефтяных скважин и жидкость глушения, полученная этим способом

Изобретение относится к добыче нефти и газа и направлено на снижение пожарной опасности, токсичности, а также на сохранение продуктивности скважины после ремонта. Технический результат - обеспечение применения негорючей жидкости глушения в широком интервале проницаемости пород, температур...
Тип: Изобретение
Номер охранного документа: 0002418835
Дата охранного документа: 20.05.2011
09.06.2019
№219.017.7e62

Способ изоляции притока пластовых вод в газовой скважине

Изобретение относится к газодобыче и может быть использовано для снижения водопроявлений в газовых скважинах с аномально низким пластовым давлением. Технический результат - повышение эффективности изоляции газовых скважин в условиях пластов с аномально низким пластовым давлением и увеличение...
Тип: Изобретение
Номер охранного документа: 0002400617
Дата охранного документа: 27.09.2010
09.06.2019
№219.017.7f4f

Способ разработки нефтяной оторочки краевого типа

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки краевых нефтяных оторочек нефтегазоконденсатных залежей. Сущность изобретения: осуществляют бурение добывающих и нагнетательных скважин. Для исключения расформирования запасов нефтяной оторочки, а...
Тип: Изобретение
Номер охранного документа: 0002442882
Дата охранного документа: 20.02.2012
19.06.2019
№219.017.8400

Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях

Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей. Предложен способ оперативного мониторинга образования техногенных залежей углеводородов в процессе...
Тип: Изобретение
Номер охранного документа: 0002691630
Дата охранного документа: 17.06.2019
03.07.2019
№219.017.a43e

Погружная насосная установка

Изобретение относится к установкам для добычи нефти из скважин погружными насосами одновременно из нескольких продуктивных пластов. Погружная насосная установка включает электродвигатель (1), центробежный насос (3) и подпорный струйный насос (2). Сопло (16) насоса (2) через патрубок сообщено с...
Тип: Изобретение
Номер охранного документа: 0002693119
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a5ec

Способ раздельного определения содержания нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава жидкой углеводородной продукции и касается способа определения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин. Способ осуществляется с помощью ИК Фурье - спектрометра высокого разрешения методом PLS и...
Тип: Изобретение
Номер охранного документа: 0002693566
Дата охранного документа: 03.07.2019
08.02.2020
№220.018.005d

Способ повышения отдачи конденсата эксплуатируемым объектом нефтегазоконденсатного месторождения

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газоконденсатных месторождений для обеспечения максимального текущего и потенциально возможного конечного коэффициентов конденсатоотдачи благодаря оперативной оптимизации технологического режима...
Тип: Изобретение
Номер охранного документа: 0002713553
Дата охранного документа: 05.02.2020
+ добавить свой РИД