×
20.01.2018
218.016.1e41

Результат интеллектуальной деятельности: Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра

Вид РИД

Изобретение

Аннотация: Изобретение относится к спектральной измерительной технике. Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра содержит внешний источник излучения, конденсорную систему, первое плоское зеркало, сферическое зеркало. В качестве регистрирующей системы использована ИК-матрица с возможностью продольного и поперечного перемещения относительно лучей, исходящих от второго плоского зеркала. Матрица размещена за фокальной плоскостью этих лучей, причем расстояние от фокальной плоскости до воспринимающей системы таково, что диаметр пучка ИК-эмиссии совпадает или близок к размеру входного окна регистрирующей матрицы. 5 ил.

Предлагаемое устройство относится к области физики - нелинейной оптике, а именно - к спектральной измерительной технике, и может быть использовано для исследования структуры веществ в жидком и твердом состояниях по спектрам инфракрасной (ИК) эмиссии в среднем диапазоне длин волн.

Регистрировать спектры ИК-эмиссии от испытуемых образцов начали сравнительно недавно, в середине прошлого столетия, когда появилась высокочувствительная ИК-Фурье техника. Чтобы получить ИК-эмиссию от образцов приходилось нагревать металлические поверхности до температур 100°C и выше. При этом регистрируемые спектры представляли собой суммарные спектры излучения металлической подложки и спектров ИК-эмиссии образца. Нетермостойкие и биологические образцы из-за их деструкции при высокой температуре не использовались.

Известна полезная модель для регистрации инфракрасного спектра эмиссии образца [1], содержащая внешний источник монохроматического излучения, предметную плоскость, тороидное зеркало, оптически связанное с предметной плоскостью и плоским зеркалом, которое расположено на одной оси с воспринимающей оптической системой регистрирующего ИК-Фурье спектрометра.

Недостатками этого устройства являются сложность оптической и регистрирующей схемы, а также технических процедур по обслуживанию оптики и подготовке образца.

Наиболее близким решением по технической сущности и достигаемому эффекту, выбранным в качестве прототипа, является полезная модель для регистрации инфракрасного спектра эмиссии образца [2], содержащая расположенные на одной оптической оси с источником излучения конденсорную систему и плоское зеркало, оптически связанное с плоскостью образца, которая сопряжена со сферическим зеркалом, оптически связанным со вторым плоским зеркалом, от которого лучи идут через ряд вспомогательных оптических элементов на компактную систему регистрации, включающую в себя ирисовую диафрагму и чувствительный ИК-приемник.

Недостатком прототипа является медленная скорость регистрация спектров за счет инерционности шагового двигателя, используемого для механического раскрытия ирисовой диафрагмы. Технической задачей решения является упрощение схемы полезной модели, уменьшение ее размеров и повышение быстродействия работы.

Поставленная задача достигается тем, что для регистрации ИК спектра эмиссии образца используется более простая по сравнению с известной полезной моделью [2] оптическая схема и принципиально иная система регистрации, представляющая собой применение фиксирующей угловое спектральное распределение ИК-излучения чувствительной инфракрасной матрицы с числом пикселей 32×31 с возможностью продольного и поперечного перемещения относительно плоскости проецирования измеряемого ИК-эмиссионного сигнала.

Сущность изобретения поясняется следующими фигурами:

на фиг. 1 изображена принципиальная оптическая схема устройства;

на фиг. 2 изображен общий вид ИК-эмиссионного спектрометра;

на фиг. 3 представлен записанный на макете предлагаемого устройства (верхняя кривая) и на традиционном ИК-Фурье спектрометре (нижняя кривая) спектр полистирола в диапазоне (600-1600 см-1);

на фиг. 4 представлен записанный на макете предлагаемого (верхняя кривая) и на традиционном ИК-Фурье спектрометре (нижняя кривая) спектр полистирола в спектральном диапазоне (1500-2800 см-1);

на фиг. 5 изображена блок-схема матричного сканирования ИК-эмиссионного сигнала:

ИК объектив - 9, матрица ИК-приемников - 10; блок термостабилизации матрицы - 11;

электронные схемы управления - 12, 13.

Предлагаемая модель (фиг. 1) содержит: источник излучения 1 (источник когерентного или некогерентного света, любая газоразрядная лампа - ртутная, ксеноновая); систему конденсоров 2; сменяемый светофильтр - 3; первое плоское зеркало 4, расположенное под углом 45° к предметной плоскости; 5 - предметную плоскость с подложкой с нанесенным на нее исследуемым образцом любой толщины, прозрачности, жидким или твердым; сферическое зеркало 6 и второе плоское зеркало 7; воспринимающую систему - матрицу 8 (число пикселей 32×31), обрабатывающий ИК-сигнал компьютер.

Предлагаемое новое решение позволило увеличить в 100 раз быстродействие прибора. Это значительно расширяет возможности данного класса приборов. Сокращение по сравнению с заявленным в патенте РФ №2345332 числа оптико-механических элементов дополнительно увеличивают светосилу оптической схемы полезной модели и обеспечивает непревзойденное отношение сигнал/шум при проведении подобных исследований. Прототип ИК-эмиссионной полезной модели работает под управлением разработанного программного обеспечения с развитой системой администрирования и обеспечения безопасности электронных данных. Пакет обеспечивает сбор данных, их обработку, в том числе количественный анализ и спектральный поиск. Общий вид модели ИК-эмиссионного спектрометра представлен на фиг. 2.

Важным параметром любого спектрального прибора является его разрешающая способность. Для изменения разрешающей способности и определения точных числовых значений спектрального разрешения полезной модели использовали подвижные оптико-механические конструкции. Изменение взаиморасположения ИК-матрицы по отношению к образцу вдоль ИК-луча позволяло заводить на ИК-матрицу полный ИК-пучок или направлять только часть исходящего от образца излучения. Это дает возможность варьировать спектральное разрешение.

Например, если на ИК-матрицу попадает большой спектральный интервал, то при заданном (1064) числе пикселей на матрице это приводит к разрешающей способности в 40 см-1. Если же матрицу переместить (отодвинуть дальше от промежуточного фокуса) так, что на матрице спектральный промежуток уменьшается, то разрешающая способность увеличивается до 4 см-1. Смещение ИК-матрицы перпендикулярно направлению эмиссии сигнала позволяет рассматривать другие участки спектра, с тем же спектральным разрешением (4 см-1). На фиг. 3 и 4 в верхней части показаны примеры спектров одного и того же образца (пленка полистирола) в разных спектральных диапазонах и с разным спектральным разрешением. В записанных на предлагаемом устройстве спектрах (фиг. 3 и 4) по оси абсцисс - угловой размер представлен в пикселях, по оси ординат - интенсивность ИК-сигнала представлена в условных единицах. Для сравнения внизу на фиг. 3 и 4 приведены спектры полистирола, полученные на традиционном ИК-Фурье спектрометре в диапазоне 1600-600 см-1 (фиг. 3) и 2800-1500 см-1 (фиг. 4).

Для изменения спектрального интервала потребовалось введение подвижных оптико-механических элементов. Таким образом, экспериментально было показано, что варьируя расположения элементов полезного макета, при одном и том же ограниченном наборе пикселей матрицы можно получать различное спектральное разрешение.

Видно, что между спектральными характеристиками, полученными на традиционном приборе ИК-Фурье спектрометре и разработанном полезном макете, наблюдается определенное сходство в количестве и положении пиков, а также распределении интенсивности между пиками, что дает основание делать вывод, что разработанный макет ИК-эмиссионного спектрометра пригоден для исследования образцов в инфракрасной области.

Тестовые измерения с помощью полезной модели также были выполнены на жидких образцах бензола C6H6 и четыреххлористого углерода CCL4 и исследованы их спектральные характеристики. Оба вещества - бензол C6H6 и четыреххлористый углерод CCL4 являются широко известными спектроскопическими объектами и использовались нами в качестве стандартов. Сравнительное отнесение полос показало хорошее совпадение.

Приведенные выше изображения на фиг. 3 и 4 показывают качество полученных спектров и возможности полезной модели в зависимости от задач.

Устройство работает следующим образом: спектрально широкополосное оптическое излучение от источника 1 фокусируется системой конденсоров 2 через сменяемые фильтры 3 на плоское зеркало 4, которое отражает сфокусированное излучение на предметную плоскость с образцом 5. Под действием излучения оптического диапазона в образце происходит возбуждение и испускание ИК-квантов. ИК-эмиссия собирается сферическим зеркалом 6, формируется в слабо расходящийся пучок и направляется на плоское зеркало 7, которое далее попадает на ИК-матрицу 8, которая регистрирует угловое распределение спектрального состава ИК-излучения и визуализирует сигнал, что далее обрабатывается компьютером с помощью программного обеспечения, который управляет матрицей и записывает спектры исследуемого образца в требуемом формате.

Сущность технического решения заключается в следующем. Частично когерентное излучение слабой интенсивности от источника видимого света фокусируется в плоскости образца и возбуждает молекулярные колебания, индуцирующие ИК-эмиссию, которая как возбуждающее излучение имеет конусную симметрию. ИК-матрица расположена ортогонально направлению эмиссионного ИК-излучения, имеющему форму концентрических колец разного диаметра. Низкочастотным колебаниям соответствуют кольца малого диаметра, а высокочастотным колебаниям - кольца большего диаметра.

Так как при использовании газоразрядной лампы с полихроматическим спектром в качестве источника возбуждающего излучения возбуждаются все моды в образце, то реализуется возможность регистрировать не только ИК-эмиссионные активные колебания, но и колебания активные в комбинационном рассеянии света. Матрица (8) имеет возможность перемещаться как вдоль оси ИК-эмиссионного луча, и при этом меняется величина разрешения регистрируемых спектров, а также и поперек луча, и тогда регистрируется необходимая часть спектра. Это дает возможность в зависимости от задач дополнительно быстро снимать спектр по частям, но с повышенным разрешением или целиком весь спектр с меньшим спектральным разрешением.

Качество ИК-эмиссионного спектрометра зависит от нескольких факторов, и одним из наиболее важных является совмещение оптических компонент с матрицей. Именно они определяют качество изображения источника излучения и определяют спектральное разрешение ИК - эмиссионного спектрометра. Была создана и испытана модель для регистрации спектров эмиссии. Источник видимого света - ксеноновая лампа мощностью 100 Вт, лучи от которой фокусировались системой короткофокусных линз диаметром 20 мм. Матрица с числом пикселей 32×31 устанавливалась на пути сходящихся лучей от второго плоского зеркала на расстоянии, при котором размер пучка ИК-эмиссии совпадал по размерам с входным окном матрицы 9 (фиг. 5), тем самым использовалось полностью все идущее на матрицу излучение от образца. На фиг. 5 представлена блок-схема ИК-матрицы, которая содержит: ИК-объектив - 9; матрицу ИК-приемников - 10; блок термостабилизации матрицы - 11; электронные схемы управления - 12, 13.

Для повышения спектрального разрешения возможно использование матрицы с большим числом пикселей, но следствием этого будет значительное удорожание полезной модели.

Предлагаемая полезная модель, по сравнению с прототипом, обладает следующими преимуществами:

- она более компактна по сравнению с прототипом, поскольку содержит меньшее число оптических и электронных элементов. В частности, не используются ирисовая диафрагма, шаговый двигатель и пироэлектрический приемник. Используемый в регистрирующей системе прототипа пироэлектрический приемник не функционирует в непрерывном режиме, а только в импульсном, чтобы не было выхода его сигнала за пределы динамического диапазона. Для этого применялся модулятор - вращающийся с частотой 100 Гц прерыватель сигнала, что усложняло модель, замедляло время обработки компьютером полезного сигнала, а также увеличивало ее габариты. Размеры предлагаемой модели составляют 300×200×100 см;

- модель имеет более простую оптическую схему, дешевле в изготовлении, более портативна, приведенные выше габариты делают ее удобной и переносной;

- благодаря использованию матрицы появилась возможность быстро и в автоматическом режиме получать обзорные спектры в области 400-3000 см-1 с разрешением около 40 см-1 или детально регистрировать любую часть спектра, но с лучшим разрешением около 4 см-1. Это делает более быстрой регистрацию спектров, что упрощает и облегчает работу модели и создает удобство в пользовании и с меньшими погрешностями измерений.

Таким образом, поставленная задача успешно достигнута.

Источники информации

1. «Preliminary Studies of Laser-Induced Thermal Emission Spectroscopy of Condensed Phases», L.T. Lin, D.D. Archibald and D.E. Honigs, Applied Spectroscopy, Volume 42, №3, 1988.

2. Прототип. Патент РФ №2345332 от 27 января 2009 г. Устройство для регистрации инфракрасного спектра эмиссии образца, Авторы Терпугов Е.Л., Дегтярева О.В., Хорохорин А.И., Савранский В.В., Митрохин И.А., Ахметов В.А. Заявка №2007112801.

Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра, содержащее внешний источник излучения и следующие за ним конденсорную систему и первое плоское зеркало, оптически связанное с этой системой и плоскостью образца, сферическое зеркало, которое сопряжено с плоскостью образца и со вторым плоским зеркалом, отличающееся тем, что в качестве регистрирующей системы использована ИК-матрица с возможностью продольного и поперечного перемещения относительно лучей, исходящих от второго плоского зеркала, и размещена за фокальной плоскостью этих лучей, причем расстояние от фокальной плоскости до воспринимающей системы таково, что диаметр пучка ИК-эмиссии совпадает или близок к размеру входного окна регистрирующей матрицы.
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра
Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
20.02.2013
№216.012.2784

Способ извлечения высоковязких нефтей и природных битумов из залежи

Изобретение относится к области добычи нефти, к способам разработки месторождений высоковязких нефтей или природных битумов горизонтальными скважинами с использованием углеводородных растворителей, и может быть использовано при добыче тяжелых высоковязких нефтей и битумов. Обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002475636
Дата охранного документа: 20.02.2013
20.03.2014
№216.012.ad0b

Способ определения малых концентраций молекул летучих веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и...
Тип: Изобретение
Номер охранного документа: 0002510014
Дата охранного документа: 20.03.2014
20.04.2014
№216.012.bc6b

Способ разработки залежи нефти в отложениях баженовской свиты

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки залежи нефти в отложениях баженовской свиты. Сущность изобретения: по способу осуществляют бурение добывающих и нагнетательных скважин с осуществлением закачки в пласт метансодержащего газа,...
Тип: Изобретение
Номер охранного документа: 0002513963
Дата охранного документа: 20.04.2014
10.12.2014
№216.013.0f1c

Способ определения концентрации диэтиленгликоля в промысловых диэтиленгликолевых растворах

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений, а именно к фотометрическим способам определения концентрации диэтиленгликоля в насыщенном (после поглощения влаги из газа)...
Тип: Изобретение
Номер охранного документа: 0002535285
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.2069

Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях

Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных...
Тип: Изобретение
Номер охранного документа: 0002539745
Дата охранного документа: 27.01.2015
20.10.2015
№216.013.83d9

Способ раздельного измерения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений методами ИК-спектрометрии. Содержание нефти и газового конденсата в продукции нефтегазоконденсатных скважин определяют...
Тип: Изобретение
Номер охранного документа: 0002565356
Дата охранного документа: 20.10.2015
10.04.2019
№219.017.0249

Устройство для регистрации инфракрасного спектра эмиссии образца

Устройство для регистрации инфракрасного спектра эмиссии образца содержит источник излучения, сферическое зеркало, оптически связанное с плоскостью образца и первым плоским зеркалом, расположенным на одной оптической оси с воспринимающей системой, приемник, регистрирующий излучение, и...
Тип: Изобретение
Номер охранного документа: 0002345332
Дата охранного документа: 27.01.2009
Показаны записи 1-10 из 13.
20.02.2013
№216.012.2784

Способ извлечения высоковязких нефтей и природных битумов из залежи

Изобретение относится к области добычи нефти, к способам разработки месторождений высоковязких нефтей или природных битумов горизонтальными скважинами с использованием углеводородных растворителей, и может быть использовано при добыче тяжелых высоковязких нефтей и битумов. Обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002475636
Дата охранного документа: 20.02.2013
20.03.2014
№216.012.ad0b

Способ определения малых концентраций молекул летучих веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и...
Тип: Изобретение
Номер охранного документа: 0002510014
Дата охранного документа: 20.03.2014
20.04.2014
№216.012.bc6b

Способ разработки залежи нефти в отложениях баженовской свиты

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки залежи нефти в отложениях баженовской свиты. Сущность изобретения: по способу осуществляют бурение добывающих и нагнетательных скважин с осуществлением закачки в пласт метансодержащего газа,...
Тип: Изобретение
Номер охранного документа: 0002513963
Дата охранного документа: 20.04.2014
10.12.2014
№216.013.0f1c

Способ определения концентрации диэтиленгликоля в промысловых диэтиленгликолевых растворах

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений, а именно к фотометрическим способам определения концентрации диэтиленгликоля в насыщенном (после поглощения влаги из газа)...
Тип: Изобретение
Номер охранного документа: 0002535285
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.2069

Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях

Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных...
Тип: Изобретение
Номер охранного документа: 0002539745
Дата охранного документа: 27.01.2015
20.10.2015
№216.013.83d9

Способ раздельного измерения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений методами ИК-спектрометрии. Содержание нефти и газового конденсата в продукции нефтегазоконденсатных скважин определяют...
Тип: Изобретение
Номер охранного документа: 0002565356
Дата охранного документа: 20.10.2015
16.06.2018
№218.016.6335

Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты

Изобретение относится к сельскому хозяйству. Предложен способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля. При этом семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты при мощности потока излучения...
Тип: Изобретение
Номер охранного документа: 0002657476
Дата охранного документа: 14.06.2018
09.08.2018
№218.016.784d

Способ тестирования эффективности рострегулирующего воздействия на растения

Изобретение относится к сельскому хозяйству, а именно к способам тестирования эффективности регуляторов роста растений с помощью оптических характеристик, поскольку количество метаболитов, образующихся в процессе прорастания семян, характеризует степень их прорастания. Для этого водные...
Тип: Изобретение
Номер охранного документа: 0002663284
Дата охранного документа: 03.08.2018
10.04.2019
№219.017.0249

Устройство для регистрации инфракрасного спектра эмиссии образца

Устройство для регистрации инфракрасного спектра эмиссии образца содержит источник излучения, сферическое зеркало, оптически связанное с плоскостью образца и первым плоским зеркалом, расположенным на одной оптической оси с воспринимающей системой, приемник, регистрирующий излучение, и...
Тип: Изобретение
Номер охранного документа: 0002345332
Дата охранного документа: 27.01.2009
05.07.2019
№219.017.a5ec

Способ раздельного определения содержания нефти и газового конденсата в продукции нефтегазоконденсатных скважин

Изобретение относится к области исследования состава жидкой углеводородной продукции и касается способа определения массовых долей нефти и газового конденсата в продукции нефтегазоконденсатных скважин. Способ осуществляется с помощью ИК Фурье - спектрометра высокого разрешения методом PLS и...
Тип: Изобретение
Номер охранного документа: 0002693566
Дата охранного документа: 03.07.2019
+ добавить свой РИД