×
20.01.2015
216.013.1f77

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано для получения многослойных композитов на основе системы Cu-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Способ получения многослойного композита на основе меди и алюминия включает механическую обработку смеси металлических порошков в шаровой мельнице в инертной атмосфере и последующее компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена. В качестве исходных материалов используют смесь порошков меди и алюминия чистотой не менее 98% с долей алюминия от 5 до 50 мас.%, обработку порошков проводят в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/спродолжительностью от 0,5 до 10 минут. Компактирование осуществляют при температуре от 10 до 100°C, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥100. Материал характеризуется увеличенной площадью межфазных границ, что повышает его твердость. 3 ил., 1 пр.
Основные результаты: Способ получения многослойного композита на основе меди и алюминия, включающий механическую обработку смеси металлических порошков в шаровой мельнице в инертной атмосфере и последующее компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена, отличающийся тем, что в качестве исходных материалов используют смесь порошков меди и алюминия чистотой не менее 98% с долей алюминия от 5 до 50 мас.%, обработку порошков проводят в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/спродолжительностью от 0,5 до 10 минут, компактирование осуществляют при температуре от 10 до 100°C, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥100.

Изобретение относится к области материаловедения и может быть использовано в технологических циклах получения многослойных композитов на основе системы Cu-Al, а также прекурсоров для синтеза наноструктурных интерметаллических соединений данной системы. Известен способ получения многослойных нанокомпозитных материалов путем многократной пакетной прокатки (Карпов М.И., Внуков В.И., Волков К.Г. и др. Возможности метода вакуумной прокатки как способа получения многослойных композитов с нанометрическими толщинами слоев // Материаловедение. 2004. №1. С.48-53). На начальном этапе каждого цикла собирается многослойный пакет, который сначала подвергается прокатке на вакуумном прокатном стане с предварительным нагревом, а затем прокатывается при комнатной температуре до ленты тонкого сечения. В первом цикле пакеты собираются из чередующихся фольг двух или более разнородных металлов и сплавов, а в каждом из последующих циклов уже из многослойных фольг, полученных после предыдущего цикла. Этот способ позволяет получать композиты с минимальной толщиной слоев около 10 нанометров. Недостатком данного способа является технологическая сложность процесса обработки, требующего нагрева материала, чистоты поверхности образцов и вакуума.

Известен способ получения многослойных покрытий методом осаждения из газовой фазы (Wadley H.N.G., Hsiung L.M., Lankey R.L. Artificially layered nanocomposites fabricated by jet vapor deposition // Composites Engineering. 1995. Vol.5, №7. P.935-950), позволяющий получать толщину слоев Cu и Al на уровне нескольких десятков нанометров.

Недостатком данного способа являются низкая скорость нанесения покрытий.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ получения композита на основе системы Mg-Ni (Révész A., Kánya Zs., Verebélyi Т., Szabó P.J., Zhilyaev A.P., Spassov T. The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30 // Journal of Alloys and Compounds. 2010. Vol.504. №1. P.83-88). Этот способ включает механическую обработку смеси порошков Mg и Ni в шаровой мельнице и последующее компактирование методом кручения под давлением. При этом подобная комбинированная механическая обработка в целях получения многослойных композитных материалов на основе меди и алюминия ранее не использовалась.

Задачей настоящего изобретения является разработка способа получения композита меди и алюминия разного состава со слоистой (ламинатной) структурой, характеризующейся наномасштабным размером зерен и слоев, повышенной твердостью и большой удельной площадью межфазных границ.

Поставленная задача решается посредством того, что заявленный способ включает механическую обработку смеси металлических порошков в шаровой мельнице в инертной атмосфере и последующее компактирование кручением под квазигидростатическим давлением (на наковальнях Бриджмена), но в отличие от прототипа в качестве исходных материалов используют смесь порошков меди и алюминия чистотой не менее 98% с долей алюминия от 5 до 50 мас.%, обработку порошков проводят в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/с2 продолжительностью от 0,5 до 10 минут, компактирование осуществляют при температуре от 10 до 100°C, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥100.

Предложенный способ осуществляется следующим образом.

На первом этапе проводится механическая обработка (активация) смеси порошков Cu и Al в шаровой мельнице. Загрузка и обработка порошков производятся в инертной атмосфере. Продолжительность механической активации, коэффициент загрузки, количество и размер мелющих тел выбираются в зависимости от характеристик шаровой мельницы. Для ограничения разогрева материала в процессе обработки мельница оснащается водяным охлаждением или обработка осуществляется с перерывами. В процессе механической активации в шаровой мельнице формируются композитные порошинки из меди и алюминия. В результате комплексной реализации процессов деформации, слипания и фрагментации происходит механическое перемешивание компонентов внутри порошинок, что сопровождается увеличением площади межфазных границ и уменьшением размеров фаз. Выбор параметров обработки ограничен, с одной стороны, необходимостью как можно более глубокого перемешивания компонентов композита. С другой стороны, механическая активация способна обеспечить активацию процессов синтеза интерметаллических фаз Al4Cu9, AlCu, Al2Cu и др. на межфазных границах, интенсивность которых зависит как от общего разогрева материала и оснастки мельницы, так и от величины тепловой энергии, выделяющейся в локальной области при единичном акте столкновения. В связи с этим максимальная продолжительность обработки ограничена допустимыми пределами объемных долей этих интерметаллидов, а также загрязнения материала продуктами износа оснастки мельницы.

Компактирование полученных после механической активации прекурсоров проводится путем приложения высокого квазигидростатического давления. Для более полной консолидации (минимизации остаточной пористости) давление выбирается не ниже напряжения пластического течения обрабатываемого композита. В условиях приложенного давления производится деформация сдвигом, что приводит к формированию в материале анизотропной слоистой структуры, в поперечном сечении представленной чередующимися полосами меди и алюминия, преимущественно параллельными направлению действия сдвиговых напряжений. Ширина полос в направлении, параллельном оси кручения, зависит от предварительной механической активации и степени сдвиговой деформации. Возможно получение состояний, в которых более 50% объема материала занимают полосы с шириной менее 70 нм. При этом в предлагаемом способе степень деформации сдвигом не должна быть ниже γ=L/h, где L - средний размер однофазных областей в порошке после обработки в шаровой мельнице, h - требуемая средняя ширина слоев в данном участке образца. Сдвиговая деформация также способствует снижению остаточной пористости, что обеспечивает повышение механических (прочностных) характеристик композита. Следует отметить, что процесс компактирования и деформации может проводиться при комнатной температуре без внешнего нагрева или охлаждения образца.

Пример использования заявленного изобретения приведен ниже.

ПРИМЕР

Использовались порошки Cu (чистота 99,5%) и Al (марки ПА-4, чистота не менее 98%). Смесь порошков 70 мас.% Cu и 30 мас.% Al была подвергнута механической активации в планетарной шаровой мельнице АГО-2 - продолжительностью 3 минуты. При обработке использовалась стальная оснастка, атмосфера Ar, центробежное ускорение шаров составляло 400 м/с2. Как показано на рисунке 1 (морфология смеси Cu+Al после 30 секунд (а) и 3 минут (б) механической обработки в шаровой мельнице, растровая электронная микроскопия), после механической активации размер порошинок находится в диапазоне от субмикронных до 100-200 микрометров.

Компактирование и деформация механоактивированной смеси осуществлялось методом кручения под давлением 7 ГПа на наковальнях Бриджмена при температуре 20°C. Величина относительного поворота наковален составила 2 оборота. В результате были получены образцы в форме дисков диаметром 8 мм и толщиной 0,2 мм. Степень деформации рассчитывали по формуле γ=2×π×N×r/H, где N - число оборотов, r - расстояние от оси кручения, Н - толщина образца. Таким образом, на расстоянии 3 мм от оси кручения степень деформации составила γ≈188. На рисунке 2 приведены светлопольные изображения микроструктуры и соответствующая картина микродифракции, полученные в просвечивающем электронном микроскопе в сечении, перпендикулярном плоскости наковален на расстоянии 3 мм от оси кручения. В указанном сечении микроструктура представлена чередующимися полосами Cu и Al, а также полосами или частицами интерметаллических соединений (преимущественно Al2Cu). Ширина полос, разделенных как межфазными, так и межзеренными границами, составляет, как правило, 10-100 нм (рис.3. Ширина полос в композите Cu+Al после консолидации). Согласно проведенным на основе полученных результатов оценкам удельная площадь межфазных границ в данном материале составляет порядка 3,5 м2/г, что свидетельствует о высокой реакционной способности композита. Микротвердость механокомпозита на этапе механической активации возрастает до 3 ГПа, а на этапе компактирования - до 4-5 ГПа.

Важной особенностью структурных состояний, полученных настоящим способом, является фрагментация полос на зерна и субзерна с высокой плотностью дефектов кристаллического строения в их объеме и на межзеренных границах, что обеспечивает как дополнительные возможности повышения механических характеристик композита (деформационное упрочнение), так и изменение теплофизических свойств материала за счет аккумулированной энергии деформации.

К преимуществам изобретения следует отнести технологическую простоту обработки, отсутствие требования дополнительного нагрева материала в процессе обработки, малую продолжительность цикла обработки, формирование в материале наноструктурного состояния с шириной полос несколько десятков нанометров, увеличение реакционной способности компонентов композита в связи с увеличением площади межфазных границ, реализацию деформационного и дисперсного упрочнения материала.

Способ получения многослойного композита на основе меди и алюминия, включающий механическую обработку смеси металлических порошков в шаровой мельнице в инертной атмосфере и последующее компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена, отличающийся тем, что в качестве исходных материалов используют смесь порошков меди и алюминия чистотой не менее 98% с долей алюминия от 5 до 50 мас.%, обработку порошков проводят в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/спродолжительностью от 0,5 до 10 минут, компактирование осуществляют при температуре от 10 до 100°C, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥100.
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 37.
20.06.2013
№216.012.4dbf

Способ оценки коэффициента светопропускания силикатного сырья

Использование: для оценки коэффициента светопропускания силикатного сырья. Сущность: заключается в том, что отбирают монофракции кварца, прокаливают их до температуры 400°С с последующим возбуждением рентгенолюминесценции, при этом рентгенолюминесценцию возбуждают в полосе 370 нм и оценивают...
Тип: Изобретение
Номер охранного документа: 0002485485
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4ec5

Способ выращивания мицелия grifola frondosa

Изобретение относится к области биотехнологии и сельскохозяйственному производству, в частности к грибоводству. Способ включает приготовление посевного материала на агаризованной питательной среде в присутствии стимулятора роста, в качестве которого используют селективный свет с длиной волны...
Тип: Изобретение
Номер охранного документа: 0002485758
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5067

Способ получения 2-метилимидазола

Настоящее изобретение относится к способу получения 2-метилимидазола, включающий смешение 40% водного глиоксаля, ацетальдегида и водного аммиака с последующим выделением целевого продукта посредством дистилляции, отличающийся тем, что используют 25% раствор аммиака, смешение ацетальдегида с...
Тип: Изобретение
Номер охранного документа: 0002486176
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53e9

Способ получения планарного волновода оксида цинка в ниобате лития

Изобретение может быть использовано области интегральной и нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития включает приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение раствора на...
Тип: Изобретение
Номер охранного документа: 0002487084
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5413

Способ получения 1,4-диоксан-2,3-диола

Изобретение относится к способу получения 1,4-диоксан-2,3-диола, который является реагентом для получения гетероциклических азотсодержащих соединений (в частности, пиразинов), а также используется в фотографии. Способ включает конденсацию глиоксаля с этиленгликолем при нагревании с удалением...
Тип: Изобретение
Номер охранного документа: 0002487126
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.5f7a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и никеля

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных,...
Тип: Изобретение
Номер охранного документа: 0002490074
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.619d

Способ удаления кислорода из фоновых растворов для вольтамперометрического анализа

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа. Способ включает предварительное удаление растворенного кислорода под действием УФ-облучения в присутствии добавки. Удаление растворенного...
Тип: Изобретение
Номер охранного документа: 0002490621
Дата охранного документа: 20.08.2013
20.10.2013
№216.012.764e

Способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-nb с термоупругими γ-α' мартенситными превращениями

Изобретение относится к области металлургии, а именно к термической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Nb, и может быть использовано в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания...
Тип: Изобретение
Номер охранного документа: 0002495946
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.764f

Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава conial

Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитных сплавов СоNiАl. Для повышения механических и функциональных свойств, создания материала с двойным эффектом памяти формы и высокотемпературной сверхэластичностью в способе получения...
Тип: Изобретение
Номер охранного документа: 0002495947
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.794a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и марганца

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных,...
Тип: Изобретение
Номер охранного документа: 0002496712
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 39.
20.06.2013
№216.012.4dbf

Способ оценки коэффициента светопропускания силикатного сырья

Использование: для оценки коэффициента светопропускания силикатного сырья. Сущность: заключается в том, что отбирают монофракции кварца, прокаливают их до температуры 400°С с последующим возбуждением рентгенолюминесценции, при этом рентгенолюминесценцию возбуждают в полосе 370 нм и оценивают...
Тип: Изобретение
Номер охранного документа: 0002485485
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4ec5

Способ выращивания мицелия grifola frondosa

Изобретение относится к области биотехнологии и сельскохозяйственному производству, в частности к грибоводству. Способ включает приготовление посевного материала на агаризованной питательной среде в присутствии стимулятора роста, в качестве которого используют селективный свет с длиной волны...
Тип: Изобретение
Номер охранного документа: 0002485758
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5067

Способ получения 2-метилимидазола

Настоящее изобретение относится к способу получения 2-метилимидазола, включающий смешение 40% водного глиоксаля, ацетальдегида и водного аммиака с последующим выделением целевого продукта посредством дистилляции, отличающийся тем, что используют 25% раствор аммиака, смешение ацетальдегида с...
Тип: Изобретение
Номер охранного документа: 0002486176
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53e9

Способ получения планарного волновода оксида цинка в ниобате лития

Изобретение может быть использовано области интегральной и нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития включает приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение раствора на...
Тип: Изобретение
Номер охранного документа: 0002487084
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5413

Способ получения 1,4-диоксан-2,3-диола

Изобретение относится к способу получения 1,4-диоксан-2,3-диола, который является реагентом для получения гетероциклических азотсодержащих соединений (в частности, пиразинов), а также используется в фотографии. Способ включает конденсацию глиоксаля с этиленгликолем при нагревании с удалением...
Тип: Изобретение
Номер охранного документа: 0002487126
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.5f7a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и никеля

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных,...
Тип: Изобретение
Номер охранного документа: 0002490074
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.619d

Способ удаления кислорода из фоновых растворов для вольтамперометрического анализа

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа. Способ включает предварительное удаление растворенного кислорода под действием УФ-облучения в присутствии добавки. Удаление растворенного...
Тип: Изобретение
Номер охранного документа: 0002490621
Дата охранного документа: 20.08.2013
20.10.2013
№216.012.764e

Способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-nb с термоупругими γ-α' мартенситными превращениями

Изобретение относится к области металлургии, а именно к термической обработке монокристаллов ферромагнитного сплава нового состава Fe-Ni-Co-Al-Nb, и может быть использовано в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания...
Тип: Изобретение
Номер охранного документа: 0002495946
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.764f

Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава conial

Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитных сплавов СоNiАl. Для повышения механических и функциональных свойств, создания материала с двойным эффектом памяти формы и высокотемпературной сверхэластичностью в способе получения...
Тип: Изобретение
Номер охранного документа: 0002495947
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.794a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и марганца

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных,...
Тип: Изобретение
Номер охранного документа: 0002496712
Дата охранного документа: 27.10.2013
+ добавить свой РИД