×
27.12.2014
216.013.15a6

Результат интеллектуальной деятельности: ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к фотосенсибилизатору для фотодинамической терапии. Заявлен метиловый эфир 13,17-бис(N-метил-N,N-диэтиламмониоэтиламид) хлорина e дитозилат в качестве фотосенсибилизатора, имеющий формулу: Заявленное соединение стабильно, обладает высокой фотобактерицидной активностью in vitro и высокой фотодинамической эффективностью. 4 ил., 2 табл., 9 пр.
Основные результаты: Метиловый эфир 13,17-бис-(N-метил-N,N-диэтиламмониоэтиламид) хлорина e дитозилат как фотосенсибилизатор для фотодинамической терапии.

Настоящее изобретение относится к медицине, а именно - к фотосенсибилизаторам (ФС) для фотодинамической терапии (ФДТ) злокачественных новообразований и ряда других патологических состояний.

Метод ФДТ основан на применении природных или синтетических ФС, которые обладают способностью к избирательному накоплению (тропностью) в опухолевой ткани. При облучении светом определенной длины волны ФС переходит в активированное состояние, которое инициирует образование цитотоксических агентов - синглетного кислорода и свободных радикалов, вызывающих разрушение структурных элементов опухолевой ткани.

Одними из наиболее эффективных ФС являются хлорины (дигидропорфирины), они характеризуются сильным возрастанием интенсивности длинноволновой полосы и ее смещением в красную область по сравнению с порфиринами. Среди них следует отметить водорастворимые моно-L-аспартилхлорин e6 и другие различные формы хлорина e6, в частности отечественные препараты «Фотодитазин», «Радахлорин» и белорусский препарат «Фотолон» (Чан Тхи Хай Иен, Г.В. Раменская, Н.А. Оборотова // Росс. Биотерапевт. Ж. 2009. Вып. 4. С.99-104), а также синтетические хлорины - 5,10,15,20-тетракис(м-гидроксифенил)хлорин (темопорфин, m-THPC, фоскан) и производные бензопорфирина (бензопорфирин монокислота, кольцо A) (Ali H., van Lier J.E. // Chem. Rev. 1999. Vol.99. P.2379-2450; Bonnett R. / Chemical Aspects of Photodynamic Therapy. 2000. Gordon and Breach Sci. Publ).

Моно-L-аспартилхлорин e6 (препарат NPe6, MACE, Nippon Petrochemical, Токио, Япония) поглощает при 664 нм с молярным коэффициентом поглощения около 25000 М-1 см-1, характеризуется отсутствием кожной токсичности.

Преобладающее большинство фотосенсибилизаторов ряда хлорина относятся к анионному типу - их растворимость в воде достигается наличием в молекуле солеобразующих карбоксильных групп. Их недостатком является наличие в положении 13 молекулы, сопряженной с макрокольцом карбоксильной группы, которая может оказывать в анионном виде отрицательное влияние на их стабильность при хранении, понижая их окислительный потенциал.

Альтернативным способом придания растворимости в воде является введение в молекулу хлорина катионных заместителей, например остатков солей четвертичных аммониевых оснований. Положительно заряженные ФС представляют особенный интерес для антимикробной фотодинамической терапии (АФДТ) патогенных микроорганизмов.

Антимикробная ФДТ заключается в избирательной окислительной деструкции патогенных микроорганизмов при комбинированном воздействии ФС и оптического излучения соответствующего спектрального состава (Wainwright М. // J. Antimicrob. Chemother. 1998. Vol.42. P.13-28). Объектами антимикробной ФДТ являются вирусы, бактерии, грибы и простейшие микроорганизмы.

Среди микробных патогенов наиболее устойчивыми к фотодинамическим воздействиям являются грамотрицательные бактерии (Malik Z., Hanania J., Nitzan Y. // J. Photochem. Photobiol. B: Biol. 1990. Vol. 5. P.281-293), что связано с низкой проницаемостью их внешней мембраны для красителей.

Отрицательный заряд внешней поверхности жизнеспособных бактериальных клеток определяет активное связывание с ними и, соответственно, выраженную антибактериальную активность катионных красителей, например метиленового синего из класса фенотиазинов (Millson C.E., Wilson М., MacRobert A.J., Bown S.G. // J. Photochem. Photobiol. B: Biol. 1996. Vol. 2. 32. P.59-66).

Известно использование ФС «Фотосенс»® на основе сульфированного фталоцианина гидроксиалюминия для лечения инфицированных ран и трофических язв с устойчивой к антибиотикам микрофлорой (Stranadko Е.Р., Tolstykh М.Р., Riabov M.V., Krivikhin D.V. // IX World Congress of the International Photodynamic Association. Abstracts. Miyazaki. 2003. P.28). Однако анионный характер этого ФС является причиной его недостаточной эффективности по отношению к грамотрицательным бактериям.

Известно также катионное производное фталоцианина - полихолиниозамещенный фталоцианин цинка (препарат «Холосенс»®), являющийся синтетическим ФС, который наряду с высокой фотоиндуцированной противоопухолевой активностью обладает выраженным противомикробным действием (Морозова Н.Б., Якубовская Р.И., Чиссов В.И. и др. // Российский онкологический журнал. 2012. Вып.1. С.23-28). Отмечается снижение множественности опытной бактериальной взвеси в 105 раз при использовании Холосенса в концентрации 2 мкг/мл и облучении светодиодным источником (685 нм). Холосенс может быть использован как для ФДТ и флуоресцентной диагностики злокачественных новообразований, так и для антимикробной ФДТ.

Однако перечисленные выше ФС, в том числе Холосенс, обладают недостаточно высокой эффективностью лечения при использовании как для ФДТ и флуоресцентной диагностики злокачественных новообразований, так и для антимикробной ФДТ. Так, величины торможения роста опухоли при их использовании и излеченность животных не достигают 100%-ных значений.

Задачей настоящего изобретения является поиск новых ФС на базе амидопроизводных хлорина ее, превосходящих по своей эффективности перечисленные выше ФС как для ФДТ и флуоресцентной диагностики, так и для антимикробной ФДТ.

Для решения этой задачи предложено применять новое катионное кватернизованное производное хлорина e6, а именно метиловый эфир 13,17-бис(N-метил-N,N-диэтиламмониоэтиламид) хлорина e6 дитозилат (II).

При нагревании метилфеофорбида с большим избытком N,N-диэтилэтилендиамина в течение 12-15 часов при 40 до 45°С образуется диамидное производное - метиловый эфир 13,17-бис(N,N-диэтиламиноэтиламид) хлорина e6 (I). Реакцией кватернизации диамида метиловым эфиром п-толуолсульфокислоты в ацетонитриле при комнатной температуре получена водорастворимая четвертичная соль - метиловый эфир 13,17-бис-(N-метил-N,N-диэтиламмониоэтиламид) хлорина e6 дитозилат (II).

Предлагаемое изобретение иллюстрируется следующими рисунками:

Фиг.1 - Спектр флуоресценции ФС в физрастворе (А) и в среде Игла MEM, содержащей 10% ЭТС (Б): сплошная линия - ex tempore, пунктирная линия - через 24 часа.

Фиг.2 - Дозовые зависимости инактивации бактерий Е.Coli K12 TG1 по тесту тушения биолюминесценции (1 - 0,2 мкМ, 2 - 0,5 мкМ, 3 - 1 мкМ, 4 - 2 мкМ, 5 - 5 мкМ, 6 - 10 мкМ).

Фиг.3 - Зависимость ЛД90 от концентрации ФС: 1 - в дистиллированной воде, 2 - в физрастворе.

Фиг.4 - Фотоиндуцированная противоопухолевая активность ФС у мышей с саркомой S37: 1 - 1 мг/кг, 2 - 2,5 мг/кг, 3 - 5,0 мг/кг).

Предлагаемое изобретение также иллюстрируется нижеследующими примерами, но не ограничивается ими.

Пример 1. Получение 15-метилового эфира 13,17-бис(N,N-диэтиламиноэтиламида) хлорина e6 (I). Раствор 0.560 г метилфеофорбида а в 4,2 мл N,N-диэтилэтилендиамина нагревали (без доступа света) при температуре 32-37°С в течение 20 час. Раствор выливали в 400 мл гексана, выпавший осадок отфильтровывали и сушили на фильтре, затем подвергали хроматографической очистке на силикагеле. После элюирования примесей хлороформом и смесью хлороформ - метанол в объемных соотношениях 30:1, используя в качестве элюента смесь хлороформ - метанол - триэтиламин в объемных соотношениях 10:1:0.15, вымывали диамидное производное, растворитель отгоняли досуха в вакууме, остаток промывали гексаном, сушили в вакууме при комнатной температуре. Выход чистого продукта 0,52 г (69,3%). Полученное соединение растворимо в хлороформе, ароматических углеводородах, ацетоне, спирте, нерастворимо в воде. ИК-спектр обнаруживает интенсивную амидную полосу при 1651,3 см-1 и менее интенсивную полосу при 1734,2 см-1, принадлежащую эфирной группе. МАЛДИ масс-спектр, m/z 807,522 [М], вычислено М 807.11. Электронный спектр поглощения (хлороформ), λmax., нм (lg ε): 291 (3,94), 404 (5,17), 502 (4,13), 529 (3,57), 608 (3,66), 664 (4,66); 290 (3,98), 403 (5,11), 501 (4,07), 531 (3,62), 609 (3,63), 663 (4,60).

Получение метилового эфира 13,17-бис(N-метил-N,N-диэтиламмониоэтиламид) хлорина e6 дитозилата (II). Смесь 0.078 г соединения (I) и 0,20 г метилового эфира п-толуолсульфокислоты в 2,5 мл ацетонитрила выдерживали в темноте при комнатной температуре в течение трех суток, после чего растворитель отогнали в вакууме, остаток промывали серным эфиром и высушили в вакууме. Получено 0,106 г (выход около 93%) четвертичной соли (II). Соединение гигроскопично, легко растворимо в воде, растворимо в водном этаноле, в органических растворителях (бензол, хлороформ, ацетон, ДМСО). Электронный спектр поглощения, λmax., нм (lg ε) (вода): 286 (3,94), 401 (5,24), 500 (4,04), 529 (3,00), 608 (3,49), 658 (4,60). Найдено, %: С 63,20; Н 7,64, 7,59; N 8,91, 8,62; S 5,27; 5,03. C63H86N8O10S2. Вычислено, %: С 64,20; Н 7,28; N 9,51; S 5,44.

Пример 2. Стабильность ФС в динамике.

Оценку стабильности ФС проводили с помощью абсорбционного и флуоресцентного методов анализа. Хлорин II легко растворим в физрастворе (0,9% растворе NaCl) до концентрации 1 мг/мл. Растворы для проведения исследований готовили ex tempore, достигая выбранной концентрации путем последовательных разведений исходного раствора. Спектры поглощения регистрировали на спектрофотометре «Genesys 2» (США) в диапазоне длин волн от 600 до 900 нм. Регистрацию флуоресценции растворов проводили в динамике контактным способом на лазерном спектральном анализаторе для флуоресцентной диагностики опухолей «ЛЭСА-6» (ТОО «БиоСпек», Россия). Флуоресценцию возбуждали He-Ne лазером с длиной волны генерации 632,8 нм, спектральный диапазон измерения от 600 до 900 нм.

Раствор хлорина II стабилен в течение суток инкубации в физрастворе и в среде Игла MEM с содержанием 10% эмбриональной телячьей сыворотки (ЭТС) в концентрации 5 мкМ в темновых условиях. В выбранном временном диапазоне не выявлено ни сдвигов Q-полосы, ни уменьшения оптической плотности и интенсивности флуоресценции, сохранялась симметрия основной полосы (Фиг.1, Таблица 1).

Таблица 1
Оптическая плотность ФС в физрастворе и в среде Игла MEM, содержащей 10% ЭТС, λmax 666 нМ
Время инкубации Ex tempore через 2 часа через 4 часа через 24 часа
Физраствор
OD, усл.ед. 0,47±0,03 0,42±0,04 0,41±0,02 0,39±0,03
Среда Игла с содержанием 10% ЭТС
OD, усл.ед. 0,59±0,02 0,58±0,03 0,55±0,02 0,53±0,02

Пример 3. Фотоиндуцированная активность хлорина (II) в отношении клеток культуры НЕр2.

Исследования проводили на опухолевых клетках человека - эпидермоидной карциноме гортаноглотки (НЕр2), полученных из Института вирусологии им. Д.И. Ивановского РАМН, которые культивировались при 37°С в увлажненной атмосфере, содержащей 5% СО2.

Клетки рассевали в лунки плоскодонного 96-луночного микропланшета в концентрации 65 тыс. кл./мл. Тестируемый краситель вносили в лунки через 24 часа после посева, варьируя концентрацию от 0,12 до 10 мкМ. Для оценки фототоксичности через 0,5, 2 и 6 часов инкубации с ФС клетки облучали галогеновой лампой через широкополосный фильтр КС-10 (λ≥640 нм). Плотность мощности составляла 36,0±1,0 мВт/см2, расчетная световая доза - 10 Дж/см2. После облучения клетки инкубировали в течение суток в стандартных условиях. Оценку выживаемости определяли визуально и колориметрическим методом с использованием МТТ-теста. Биологически значимым эффектом считали ингибирование роста клеток в культуре более чем на 50% (средняя величина по результатам трех независимых тестов).

Выявлено, что ФС проявил максимальную фотоиндуцированную активность относительно клеток культур НЕр2 при 2-часовой инкубации, ИК50 составляла 0,45±0,04 мкМ, с увеличением времени инкубации до 6 часов величина ИК50 практически не изменялась и составляла 0,52±0,05 мкМ.

Таким образом, результаты, полученные in vitro, показали, что хлорин II обладает высокой фотоиндуцированной активностью в отношении клеток культуры НЕр2.

Пример 4. Фотобактерицидную активность in vitro определяют на генно-инженерном биолюминесцентном штамме грам-отрицательных бактерий Е. coli K12 TG1. К суспензии бактерий (3×107 КОЕ/мл) в дистиллированной воде добавляют ФС в концентрации 0,2-10 мкМ, инкубируют 10 мин в отсутствие освещения и облучают белым светом источника ЭКОМП (50 мВт/см, доза света 1-9 Дж/см2). Оценку результатов инактивации колониеобразующих единиц (КОЕ) бактерий проводят по тесту тушению биолюминесценции. На Фиг.2 приведены дозовые зависимости инактивации бактерий Е. coli K12 TG1 по тесту тушению биолюминесценции. При концентрации ФС 5 мкМ и дозе белого света 3 Дж/см2 происходит уменьшение КОЕ в 50 раз.

Пример 5. Определение ЛД90 проводят по дозовым зависимостям инактивации бактериального биосенсора в физрастворе или дистиллированной воде для концентраций хлорина 0,2-10 мкМ. На Фиг.3 приведена зависимость ЛД90 от концентрации хлорина II в дистиллированной воде (1) и в физрастворе (2). Для каждой концентрации ФС определяют дозу белого света, вызывающую инактивацию колониеобразующих единиц (КОЕ) бактерий на 90%.

Проведено сравнение ЛД90 для хлоринового и фталоцианинового ФС (Холосенс, октакатионный октакис-холинилфталоцианин цинка) в дистиллированной воде и в физрастворе. В дистиллированной воде Холосенс в 2 раза более активен в фотодинамической инактивации бактерий (для концентрации 2 мкМ ЛД90 составляет 1 и 2 Дж/см2, соответственно). Однако в физрастворе активность Холосенса уменьшается в большей степени, чем у хлорина (II) - в физрастворе для концентрации 2 мкМ ЛД90 составляет 6 и 5 Дж/см2, соответственно. Это объясняется различным механизмом связывания в физрастворе с бактериальными клетками, что демонстрируется следующим примером.

Пример 6. Определение дзета потенциала клеток грам-отрицательных бактерий E. coli K12 TG1.

Измеряют поверхностный (дзета) потенциал бактериальных клеток в дистиллированной воде и в физрастворе с добавлением ФС или без него. Результаты представлены в таблице 2. Фотодинамическая активность Холосенса проявляется только в условиях электростатического связывания с бактериальными клетками, что следует из нейтрализации их дзета потенциала в присутствии ФС, и сильно зависит от этого параметра. Уменьшение дзета потенциала в физрастворе приводит к снижению способности Холосенса связываться с клетками бактерий и к уменьшению его фотодинамической активности (увеличению ЛД90). Действие дикатионного хлорина (II) в меньшей степени обусловлено нейтрализацией дзета потенциала клеток бактерий. Сдвиг дзета потенциала в физрастворе не вызывает столь резкого уменьшения фотодинамической активности этого ФС.

Таблица 2
Дзета потенциал клеток грам-отрицательных бактерий E. coli K12 TG1
Концентрация, мкМ Хлорин (II) Холосенс
Дист. вода Физраствор Дист. вода Физраствор
0 -35 мВ -20 мВ -35 мВ -20 мВ
0,2 -35 мВ -20 мВ -22 мВ -19 мВ
0,5 -35 мВ -20 мВ -14 мВ -8 мВ
1 -34 мВ -19 мВ -7 мВ -1 мВ
2 -33 мВ -19 мВ +3,5 мВ +1 мВ

Пример 7. Распределение хлорина (II) в опухоли S37 и флуоресцентная контрастность относительно окружающей ткани.

Оценку распределения ФС в опухолевой и окружающих тканях проводили у мышей с саркомой S37 в интервале от 5 секунд до 48 часов методом локальной флуоресцентной спектроскопии (ЛФС). ФС вводили внутривенно в дозе 5,0 мг/кг. Флуоресценцию регистрировали контактным способом на лазерном спектральном анализаторе «ЛЭСА-06».

В опухолевой ткани нормированная флуоресценция ФС регистрировалась на максимальном уровне через 1-2 часа после введения и составляла 8,5±0,9 - 9,7±2,4 усл. ед., а затем к 48 часам снижалась на 45% от максимального значения. Наиболее высокий уровень нормированной флуоресценции в коже (4,8±1,4 усл. ед.) наблюдался через 2 часа после введения хлорина (II), в мышце (12,0±0,7 усл. ед.) - через 30 минут. Максимальная флуоресцентная контрастность относительно окружающих нормальных тканей кожи регистрировалась через 1 час после введения и составляла 2,8±0,4 усл. ед., а относительно мышцы - через 48 часов после введения и составляла 1,8±0,3 усл. ед.

Пример 8. Фотоиндуцированная противоопухолевая активность хлорина (II) у животных с саркомой S37.

Изучение фотоиндуцированной противоопухолевой активности проводили у животных с саркомой S37, привитой подкожно с внешней стороны правого бедра мышам-гибридам F1, в зависимости от дозы ФС на 7 сутки после инокуляции опухоли.

В опытных группах ФС животным вводили однократно внутривенно в хвостовую вену в дозах 1,0, 2,5 и 5,0 мг/кг, соответственно. Облучение проводили через 1 час после введения ФС. Для облучения использовали светодиодный источник (ФГУП «ГНЦ РФ НИОПИК») с длиной волны 662±14 нм и плотностью мощности 100 мВт/см2 (плотность энергии 90 Дж/см2). Контрольная группа животных - без воздействия.

Эффективность ФДТ оценивали, используя общепринятые в экспериментальной онкологии критерии:

- торможение роста опухоли ТРО=[(Vк-Vоп)/Vк]·100%, где Vоп и Vк - объем опухоли в опытной и контрольной группах, соответственно;

- критерий излеченности КИ=[Nи/No]·100%, где Nи и No - количество излеченных животных и общее количество животных в опытной группе, соответственно.

Объем опухоли рассчитывали по формуле: V=d1·d2·d3, где d1, d2 и d3 - три взаимно перпендикулярных диаметра опухоли.

Измерение объема опухоли проводили в течение 21 суток после проведенного облучения с помощью электронного цифрового кронциркуля STORMtm 3C301 «Central». За животными наблюдали 50 суток.

В опытных группах в течение суток после облучения у животных образовывался интенсивный отек в зоне воздействия, который сохранялся до 5-10 суток. При использовании хлорина (II) в дозе 1,0 мг/кг ТРО составило 94,9 - 100%, КИ - 75%. Для доз 2,5 и 5,0 мг/кг выявлена еще более высокая эффективность: 100% ТРО в течение всего срока наблюдения, 100% излеченность животных в течение 50 суток наблюдения (Фиг.4).

Пример 9. Фармакокинетика хлорина (II).

Фармакокинетику изучали методом ЛФС в органах и тканях интактных мышей в дозе 5,0 мг/кг. Максимум спектра флуоресценции хлорина (II) в тканях животных регистрировали при 669±2 нм. Флуоресцирующая форма его быстро (в течение 5-30 минут) поступала во внутренние органы и ткани организма, преимущественно в печень, почки и селезенку, затем снижалась с различной скоростью. Максимальная флуоресценция хлорина (II) в крови определялась сразу после внутривенного введения и в течение 24-х часов снижалась на 94% от максимального значения и через 7 суток уже не регистрировалась.

Во внутренних органах через 24 часа уровень нормированной флуоресценции снижался в печени на 33%, почках - на 45%, селезенке - на 47% от максимального значения. Флуоресцирующая форма хлорина (II) определялась во внутренних органах более 7 суток. Остаточное количество ФС на этот срок составляло в печени 47%, в почках 20% и селезенке 25% от максимального значения.

В коже максимальное значение флуоресценции регистрировалось через 2 часа после введения красителя, затем его нормированная флуоресценция снижалась и через 24 часа составляла 73% от максимального значения, а через 7 суток - 25%. Это свидетельствует о медленном элиминировании хлорина (II) из кожи. В мышце через 24 часа уровень нормированной флуоресценции также снижался на 81%, в жировой ткани - на 29%. Остаточное количество хлорина (II) в мышце (8%) и жировой ткани (24%) регистрировалось более 7 суток.

Полученные данные свидетельствуют о более медленной циркуляции хлорина (II) в организме млекопитающих по сравнению с хлоринами природного происхождения и его выведении преимущественно через печень с желчью и почки с мочой.

Таким образом, предложенный ФС достаточно стабилен в растворах в темновых условиях и при световом воздействии, обладает высокой фотобактерицидной активностью in vitro, высокой фотодинамической эффективностью, однако более медленной циркуляцией в организме млекопитающих по сравнению с хлоринами природного происхождения. Эта особенность предложенного ФС может представлять и клинический интерес для многокурсовой терапии с использованием одной дозы ФС, повышающей эффективность и надежность лечения.

Метиловый эфир 13,17-бис-(N-метил-N,N-диэтиламмониоэтиламид) хлорина e дитозилат как фотосенсибилизатор для фотодинамической терапии.
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 102.
10.12.2014
№216.013.0e60

Фотосенсибилизатор и способ его получения

Изобретение относится к получению новой светочувствительной композиции, пригодной для фотодинамической терапии рака. Заявлен способ получения фотосенсибилизатора, заключающийся в том, что 3-пиридилкарбоксальдегид конденсируют с пирролом в смеси пропионовая кислота - пропионовый ангидрид при их...
Тип: Изобретение
Номер охранного документа: 0002535097
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.16f4

Катализатор разложения озона и способ его приготовления

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное...
Тип: Изобретение
Номер охранного документа: 0002537300
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18bb

Способ фотодинамической терапии онкологических заболеваний

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для фотодинамической терапии онкологических заболеваний. Для этого в зону опухолевой ткани в качестве фотосенсибилизатора вводят композицию из 5,10,15,20-тетракис(N-метил-3′-пиридил)хлорин и...
Тип: Изобретение
Номер охранного документа: 0002537759
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ab1

Гетерогенный сенсибилизатор и способ фотообеззараживания воды

Изобретение относится к химии и химической технологии, а именно к синтезу модифицированных силикагелей, содержащих ковалентно связанные с ними молекулы замещенных фталоцианинов, и их применению для фотообеззараживания воды. Способ обеззараживания воды с применением излучения видимого диапазона...
Тип: Изобретение
Номер охранного документа: 0002538261
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22b6

Способ получения 4,5-дицианофталевой кислоты

Изобретение относится к органической химии, конкретно к способу получения 4,5-дицианофталевой кислоты, которая может найти применение в качестве исходного соединения в синтезе 2,3,9,10,16,17,23,24-октакарбоксифталоцианинов, использующихся в терапии онкологических заболеваний. Согласно...
Тип: Изобретение
Номер охранного документа: 0002540339
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.4319

Аминоамиды в ряду бактериохлорофилла a, обладающие фотодинамической активностью, и способ их получения

Изобретение относится к аминоамидам в ряду бактериохлорофилла общей формулы: где n=2,4,8,10, обладающим фотоиндуцированной противоопухолевой активностью, и к способу их получения путем взаимодействия метилового эфира бактериофеофорбида с диаминоалканом формулы NH(CH)NH, где n=2, 4, 8, 10, в...
Тип: Изобретение
Номер охранного документа: 0002548675
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.434c

Фотосенсибилизатор для фотодинамической терапии

Настоящее изобретение касается новых эффективных фотосенсибилизаторов для фотодинамической терапии в классе амидопроизводных хлорина е. Предложенный фотосенсибилизатор 15-метиловый эфир 13,17-бис(N,N-диэтиламиноэтиламид)хлорина е селективно накапливается в опухолевой ткани, обладает...
Тип: Изобретение
Номер охранного документа: 0002548726
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.480e

Фотосенсибилизатор для фотодинамической терапии

Изобретение относится к медицине, а именно к фотосенсибилизаторам для фотодинамической терапии. Предложено применение мезо-тетра(3-пиридил)бактериохлорина структурной формулы (I) в качестве фотосенсибилизатора в ближней ИК области спектра для фотодинамической терапии. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002549953
Дата охранного документа: 10.05.2015
27.05.2015
№216.013.4f2a

Универсальный промотор для экспрессии терапевтических генов в клетках млекопитающих

Настоящее изобретение относится к биотехнологии, молекулярной медицине, в частности генной инженерии. Описаны искусственные ДНК-конструкции, демонстрирующие высокую активность транскрипционного промотора человека, с которого осуществляется экспрессия расположенной ниже произвольной нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002551784
Дата охранного документа: 27.05.2015
10.07.2015
№216.013.5cbe

Способ нанесения палладиевого покрытия на подложку

Изобретение относится к способу нанесения палладиевого покрытия на подложку и может быть использовано при изготовлении водородопроницаемых палладийсодержащих мембран. Подложку помещают в реактор, который откачивают до 1·10 Па. Подложку нагревают до необходимой температуры и доставляют пары...
Тип: Изобретение
Номер охранного документа: 0002555283
Дата охранного документа: 10.07.2015
Показаны записи 51-60 из 108.
27.12.2014
№216.013.16f4

Катализатор разложения озона и способ его приготовления

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное...
Тип: Изобретение
Номер охранного документа: 0002537300
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18bb

Способ фотодинамической терапии онкологических заболеваний

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для фотодинамической терапии онкологических заболеваний. Для этого в зону опухолевой ткани в качестве фотосенсибилизатора вводят композицию из 5,10,15,20-тетракис(N-метил-3′-пиридил)хлорин и...
Тип: Изобретение
Номер охранного документа: 0002537759
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ab1

Гетерогенный сенсибилизатор и способ фотообеззараживания воды

Изобретение относится к химии и химической технологии, а именно к синтезу модифицированных силикагелей, содержащих ковалентно связанные с ними молекулы замещенных фталоцианинов, и их применению для фотообеззараживания воды. Способ обеззараживания воды с применением излучения видимого диапазона...
Тип: Изобретение
Номер охранного документа: 0002538261
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22b6

Способ получения 4,5-дицианофталевой кислоты

Изобретение относится к органической химии, конкретно к способу получения 4,5-дицианофталевой кислоты, которая может найти применение в качестве исходного соединения в синтезе 2,3,9,10,16,17,23,24-октакарбоксифталоцианинов, использующихся в терапии онкологических заболеваний. Согласно...
Тип: Изобретение
Номер охранного документа: 0002540339
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.4319

Аминоамиды в ряду бактериохлорофилла a, обладающие фотодинамической активностью, и способ их получения

Изобретение относится к аминоамидам в ряду бактериохлорофилла общей формулы: где n=2,4,8,10, обладающим фотоиндуцированной противоопухолевой активностью, и к способу их получения путем взаимодействия метилового эфира бактериофеофорбида с диаминоалканом формулы NH(CH)NH, где n=2, 4, 8, 10, в...
Тип: Изобретение
Номер охранного документа: 0002548675
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.434c

Фотосенсибилизатор для фотодинамической терапии

Настоящее изобретение касается новых эффективных фотосенсибилизаторов для фотодинамической терапии в классе амидопроизводных хлорина е. Предложенный фотосенсибилизатор 15-метиловый эфир 13,17-бис(N,N-диэтиламиноэтиламид)хлорина е селективно накапливается в опухолевой ткани, обладает...
Тип: Изобретение
Номер охранного документа: 0002548726
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.480e

Фотосенсибилизатор для фотодинамической терапии

Изобретение относится к медицине, а именно к фотосенсибилизаторам для фотодинамической терапии. Предложено применение мезо-тетра(3-пиридил)бактериохлорина структурной формулы (I) в качестве фотосенсибилизатора в ближней ИК области спектра для фотодинамической терапии. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002549953
Дата охранного документа: 10.05.2015
27.05.2015
№216.013.4f2a

Универсальный промотор для экспрессии терапевтических генов в клетках млекопитающих

Настоящее изобретение относится к биотехнологии, молекулярной медицине, в частности генной инженерии. Описаны искусственные ДНК-конструкции, демонстрирующие высокую активность транскрипционного промотора человека, с которого осуществляется экспрессия расположенной ниже произвольной нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002551784
Дата охранного документа: 27.05.2015
10.07.2015
№216.013.5cbe

Способ нанесения палладиевого покрытия на подложку

Изобретение относится к способу нанесения палладиевого покрытия на подложку и может быть использовано при изготовлении водородопроницаемых палладийсодержащих мембран. Подложку помещают в реактор, который откачивают до 1·10 Па. Подложку нагревают до необходимой температуры и доставляют пары...
Тип: Изобретение
Номер охранного документа: 0002555283
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.65f6

Никелевый комплекс 5,10,15,20-тетракис[3',5'-ди(2"-метилбутилокси)фенил]-порфина, проявляющий свойство стационарной фазы для газовой хроматографии

Изобретение относится к никелевому комплексу 5,10,15,20-тетракис [3′,5′-ди-(2″-метилбутилокси)фенил]-порфина формулы: Изобретение позволяет получить никелевый комплекс, проявляющий свойство стационарной фазы для газовой хроматографии. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002557655
Дата охранного документа: 27.07.2015
+ добавить свой РИД