×
20.12.2014
216.013.11f4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОЙ РЕАКЦИОННОЙ ФОЛЬГИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности к технологии получения многослойных реакционных фольг. Может использоваться для соединения разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты микроэлектронных устройств. Исходную смесь компонентов подвергают холодной прокатке для придания ей формы ленты. Полученную ленту подвергают плакирующей прокатке между слоями пластичного металла (например, алюминия) с обжатием реакционной смеси от 30 до 60%. Полученная фольга содержит плакирующие наружные слои пластичного металла и внутренние реакционные слои с размером реагентов 10-100 нм. Обеспечивается снижение трудоемкости и энергоемкости, а также возможность получения фольг с заданным запасом энергии и высокими механическими свойствами. 4 з.п. ф-лы, 1 табл.

Изобретение относится к области получения изделий из металлических порошков, в частности к технологии получения многослойных энерговыделяющих наноструктурированных пленок (фольг). Многослойные системы, состоящие из чередующихся слоев металлов, при уменьшении их толщины до нанометров приобретают высокую реакционную способность. Благодаря таким уникальным свойствам, как относительно низкая температура инициирования, высокая скорость реакции и реакционного тепловыделения, они нашли применение для соединения (пайки и сварки) разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты микроэлектронных устройств.

Известен метод синтеза твердых керамических материалов, таких как карбиды, бориды и алюминиды, в частности, в виде покрытия, наносимого на другой материал, с целью увеличения его износостойкости. Метод включает в себя напыления чередующихся слоев активных металлов со слоями углерода, бора или алюминия и последующей реакции многослойной структуры для получения плотных кристаллических керамик. Материал может быть нанесен на подложку или получен в виде фольги.

Недостатком данного метода является малая производительность и высокая стоимость полученных фольг. Кроме того, использование методов вакуумного осаждения накладывает ограничения на возможность получения фольг различного состава.

Прототипом предложенного изобретения является способ получения реакционного композиционного материала (US 2009/0178741 A1, опубл. 16.07.2009), в котором исходные материалы в виде порошков и/или фольг подвергаются серии механических деформаций. Во время первого шага сборка, состоящая из реакционных слоев и/или частиц, пластически деформируется до уменьшения поперечного сечения вдвое или больше. Затем уже деформированные слои складываются в новую сборку и повторно деформируются. Количество шагов сборки и деформации повторяется достаточное количество раз для того, чтобы получившийся материал был слоевым и имел относительно равномерную скорость реакции. Конечным продуктом является локально слоевой композиционный реакционный материал.

Недостатком данного метода получения является сложность в совместном деформировании металлов с сильно различающимися механическими свойствами (пределом текучести, модулем упругости, коэффициентом Пуассона), что ограничивает выбор исходных материалов.

В предложенном изобретении достигаются следующие технические результаты:

- получение реакционных фольг в широком диапазоне составов;

- получение реакционных фольг с заданным запасом энергии;

- получение реакционных фольг с высокими механическими свойствами;

- снижение трудоемкости и энергоемкости способа получения реакционных фольг.

Способ получения наноструктурированных реакционных фольг состоит из трех основных операций, которые можно рассмотреть на примере системы Ni-Al.

Сначала исходную смесь порошков никеля и алюминия при молярном отношении реагентов, равном например 1:1, подвергают высокоэнергетической механической обработке в высокоскоростной планетарно-шаровой мельнице в течение 4-5 минут в атмосфере инертного газа при давлении 1-5 атм. Отношение массы шаров к массе исходной смеси при обработке в высокоскоростной планетарно-шаровой мельнице составляет (5-40):1, диаметр шаров равен 2-8 мм, частота вращения барабанов мельницы равна 1800-2500 об/мин.

На первом этапе, полученные таким методом композиционные наноструктурированные частицы Ni/Al подвергают холодной прокатке. Данный процесс позволяет придать реакционному порошку форму ленты.

На втором этапе, полученную формованную среду реагентов подвергают плакирующей прокатке между слоями пластичного металла (например, алюминия) с обжатием реакционной смеси от 30 до 60%.

Таким образом, полученная наноструктурированная фольга содержат плакирующие наружные слои пластичного металла (в данном примере алюминия) и внутренние беспористый никель/алюминиевый реакционный с размером реагентов от 10 до 100 нм.

В общем случае в качестве наноструктурной реакционной среды могут выступать нанопорошки IV-VI, VIII групп Периодической системы химических элементов или смеси этих порошков, а также их окислы и их смеси. Кроме того, как показано в примере, в качестве наноструктурной реакционной среды могут быть использованы механоактивированные наноструктурированные композиционные частицы, состоящие из металлов, выбранных из II-IV, VIII групп Периодической системы химических элементов и/или смеси порошков, по крайней мере, одного металла, выбранного из III-IV групп Периодической системы химических элементов, и по крайней мере, одного неметалла, выбранного из группы элементов, включающей бор, углерод, кремний.

В качестве пластичных слоев металла, используемых для плакирования формованной среды и обеспечивающих необходимые механические свойства, могут выступать фольги металлов I-VI, VIII групп Периодической системы химических элементов. Выбор плакирующего слоя осуществляется исходя из условия возможности взаимодействия с реакционной средой.

В Таблице 1 приведены примеры систем, которые могут быть использованы в качестве реакционных сред и плакирующих слоев для получения наноструктурированных фольг.

Таблица 1
Примеры систем, используемых для получения наноструктурированных фольг
Плакирующий
слой
Формованная среда
реагентов
Активный плакирующий слой (обеспечение механических свойств, участие в реакции) Пассивный плакирующий слой (обеспечение механических свойств)
1) Нанопорошок оксидов металлов (например: Fe2O3, MoO3) Al -
2) Смесь нанопорошков металлов (например: Zr+C) Ti Pt
3) Механоактивированные наноструктурированные реакционные среды (Al/Ni; Ti/C; Ti/Si) Al Cu

Преимуществами способа по заявленному изобретению является возможность получения наноструктурированных реакционных фольг с высокими механическими свойствами, а также контролируемой величиной и скоростью тепловыделения при горении.

Источник поступления информации: Роспатент

Показаны записи 231-232 из 232.
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
14.07.2019
№219.017.b4e6

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного...
Тип: Изобретение
Номер охранного документа: 0002468124
Дата охранного документа: 27.11.2012
Показаны записи 231-237 из 237.
25.08.2017
№217.015.b451

Способ получения нанокерамики методом совмещения самораспространяющегося высокотемпературного синтеза и искрового плазменного спекания

Изобретение относится к области керамического материаловедения, в частности к технологии получения нанокерамики. Техническим результатом предлагаемого изобретения является снижение энергозатрат, исключение применения различных активаторов спекания, повышение физико-механических свойств...
Тип: Изобретение
Номер охранного документа: 0002614006
Дата охранного документа: 22.03.2017
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.4d99

Способ получения полых наноструктурированных металлических микросфер

Изобретение относится к области порошковой металлургии, в частности к способам получения полых сферических порошков металлов, состоящих из нанокристаллических частиц. Полые наноструктурированные металлические микросферы имеют специфические механические, физические и химические свойства,...
Тип: Изобретение
Номер охранного документа: 0002652202
Дата охранного документа: 25.04.2018
05.02.2019
№219.016.b6dc

Способ изготовления наноразмерных нитей в виде разветвленных пучков из тугоплавкого металла

Изобретение относится к области металлургии, в частности к изготовлению разветвленных нанонитей из тугоплавких металлов, которые могут использоваться в высокотемпературных приборах, в электронных устройствах и датчиках, в магнитных записывающих устройствах, в наномеханике, магнитоэлектронике,...
Тип: Изобретение
Номер охранного документа: 0002678859
Дата охранного документа: 04.02.2019
15.02.2019
№219.016.bac8

Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002679822
Дата охранного документа: 13.02.2019
15.11.2019
№219.017.e235

Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами

Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Си), которые могут быть использованы в производстве силовых...
Тип: Изобретение
Номер охранного документа: 0002706013
Дата охранного документа: 13.11.2019
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
+ добавить свой РИД