×
10.05.2018
218.016.4d99

Способ получения полых наноструктурированных металлических микросфер

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии, в частности к способам получения полых сферических порошков металлов, состоящих из нанокристаллических частиц. Полые наноструктурированные металлические микросферы имеют специфические механические, физические и химические свойства, отличные от порошков с микронными размерами частиц, что позволяет использовать их в качестве теплоизоляционных материалов или экранирующих ЭМИ, катализаторов и в других областях науки и техники. Способ получения полых наноструктурированных микросфер переходных металлов (Ni, Cu, Со) заключается в том, что реакционный раствор, содержащий нитраты металлов и растворимые в воде органические соединения, распыляют с помощью ультразвукового или иного генератора аэрозолей, после чего при контролируемой подачи газа-носителя реакционный раствор в виде аэрозоля поступает в трубчатую печь, где под воздействием температуры в каждой капле аэрозоля самоинициируется экзотермическая реакция, в ходе которой формируется металлический порошок, состоящий из полых наноструктурированных микросфер, улавливаемый фильтром на выходе из трубчатой печи. В качестве нитратов металлов используют нитрат кобальта, и/или нитрат никеля, и/или нитрат меди. В качестве растворимых в воде органических соединений используют глицин, и/или гидразин, и/или мочевину. Изобретение позволяет формировать кристаллические наноматериалы в одну стадию в виде непрерывного процесса; конечный продукт состоит из полых металлических наноструктурированных микросфер без примеси оксида. 3 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, в частности к способам получения полых сферических порошков металлов, состоящих из нанокристаллических частиц. Полые наноструктурированные металлические микросферы имеют специфические механические, электрические, каталитические, физические и химические свойства, отличные от порошков, состоящих из частиц микронных размеров, что позволяет использовать их в качестве теплоизоляционных материалов, материалов, экранирующих электромагнитное излучение, а также в области катализа, медицины, оптоэлектроники и различных других областях науки и техники.

Известно несколько способов получения сферических порошков металлов: диспергирование расплава металлов струей жидкости или газа, центробежное диспергирование, электроэрозионный способ диспергирования; синтез с использованием жестких и мягких матриц; пиролиз солей с последующим восстановлением образовавшихся оксидов водородом при повышенных температурах. Перечисленные подходы часто состоят из трудноуправляемых многостадийных операций, при этом продукты, получаемые на выходе, требуют дополнительной сложной очистки.

В работе (Ran Yi, Rongrong Shi, Guanhua Gao, Ning Zhang, Xuemei Cui, Yuehui He, Xiaohe Liu. Hollow Metallic Microspheres: Fabrication and Characterization. J. Phys. Chem. С 2009, 113, 1222-1226) продемонстрирован способ синтеза полых металлических микросфер никеля путем реакций разложения сферического гидроксида никеля и последующего восстановления образовавшегося оксида никеля до металла. Данный способ включает приготовление смеси, содержащей водный раствор NiCl2⋅6Н2О, H5NC2O2 и Na2SO4. Затем к полученной смеси добавляют NaOH и помещают в автоклав, который выдерживают при 180°C в течение суток. В дальнейшем система остывает до комнатной температуры. Полученный осадок фильтруют и промывают абсолютным этанолом и дистиллированной водой в определенной последовательности несколько раз. После чего полые микросферы Ni(ОН)2 прокаливают при 400 и 600°C в течение 2 ч для получения полых сфер NiO. Конечной операцией является получение металлических сфер Ni путем восстановления подготовленных сфер NiO в атмосфере 5% смеси H2/N2 при 500°C в течение 2 ч. Представленный метод позволяет получать дисперсные сферические порошки металлов со средним размером сфер от 1,5 до 2 мкм.

К недостаткам данного метода стоит отнести многостадийность и длительность операций, что однозначно усложняет его использование в промышленных масштабах.

Прототипом предложенного изобретения является способ получения полых металлических микросфер (RU 94036406 A1, опубл. 20.04.1997), включающий образование жидкого металла на внутренней поверхности канала, в котором протекает газ под газодинамическим давлением 5-10 кбар, осуществляют уменьшение давления до 1-3 кбар, взрывают микрозаряд взрывчатого вещества вне потока в канале, продукты взрыва микрозаряда вводят в поток и затем извлекают образовавшиеся микросферы. Изобретение обеспечивает решение технической задачи получения металлических микросфер диаметром 10-500 мкм с толщиной стенки, составляющей около 1% диаметра.

Недостатками являются высокая энергозатратность данного способа, сложность технологических операций, а также широкое распределение, получаемых микросфер по размеру (10-500 мкм).

В предложенном изобретении достигается следующий технический результат:

- формирование кристаллических наноматериалов происходит в одну стадию в виде непрерывного процесса;

- конечный продукт состоит из металла, без примеси оксида;

- образование микросфер с узким распределением по размерам (0,5-2 мкм в диаметре);

- конечный продукт состоит из полых металлических наноструктурированных микросфер с оболочкой, состоящей из наночастиц 20-40 нм, имеющей толщину 20-100 нм, и характеризуемых высокой для металлов удельной поверхностью порядка 10 м2/г;

- удаление органических компонентов исходной реакционной смеси происходит без зауглероживания поверхности получаемых микросфер.

Технический результат достигается следующим образом.

Способ получения полых наноструктурированных металлических микросфер, заключающийся в том, что реакционный раствор, содержащий нитраты металлов и растворимые в воде органические соединения, помещают в камеру ультразвукового ингалятора, где под воздействием колебаний пьезоизлучателя формируется аэрозоль реакционного раствора, после чего, под контролируемой подачей инертного газа-носителя аэрозоль поступает в трубчатую печь, где под воздействием температуры 600-1000°C в каждой капле аэрозоля самоинициируется экзотермическая реакция, в ходе которой формируется металлический порошок, состоящий из полых наноструктурированных микросфер, улавливаемый фильтром на выходе из трубчатой печи.

В качестве нитратов металлов используют нитрат никеля, и/или нитрат кобальта, и/или нитрат меди.

В качестве растворимых в воде органических соединений используют глицин, и/или гидразин, и/или мочевину.

В качестве инертного газа-носителя используют аргон и/или азот.

Изобретение поясняется чертежами, где на фиг. 1 представлена установка для синтеза наноструктурированных металлических полых микросфер, состоящая из газо-контроллера (РРГ-10, «элточприбор», Россия) (1), УЗ-генератора (ИН-8, «Альбедо», Россия) с рабочей частотой 2,64 МГц (2), лабораторной печи (3) с кварцевым реактором (СУОЛ-0,4.4/12-М2-У4.2) (4) и стеклянного фильтра Шотта (5). На фиг. 2 и 3 представлена микроструктура синтезируемых микросфер металлического никеля, а на фиг. 4 приводится распределение наноструктурированных полых сфер по размерам. Из приведенных изображений видно, что примерно 80% полых микросфер металлического никеля меньше 2 мкм в диаметре, средний размер составляющих микросферы наночастиц 20-30 нм.

Способ осуществляется следующим образом.

Так называемый метод горения реакционных растворов в аэрозоле был разработан для производства полых наноструктурированных микросфер переходных металлов с узким распределением сфер по диаметру. Типичный процесс синтеза заключается в формировании реакционного раствора, содержащего нитраты металлов в роли окислителей и растворимые в воде органические соединения, например глицин, гидразин, мочевина в качестве восстановителей (топливо) с соотношением восстановитель/окислитель (ϕ) равным ϕ=2. В некоторых случаях для повышения температуры синтеза и удельной площади поверхности получаемых металлических микросфер используется нитрат аммония. Для генерации водных аэрозолей реакционных смесей, а также для достижения узкого распределения получаемых металлических сфер по диаметру используется ультразвуковой ингалятор (ИН-8, «Альбедо», Россия, рабочая частота пьезоизлучателя 2,64 МГц, производительность по аэрозолю 0-6 мл/мин, дисперсный состав аэрозоля 0,5-5 мкм, среднее значение масс-медианного аэродинамического диаметра частиц аэрозоля (ММАД) 3.94 мкм). Распределение сфер по размерам варьируется в зависимости от характеристик используемого распылителя и физических параметров распыляемой среды. Дисперсный состав частиц аэрозоля не влияет на конечный продукт. Реакционный раствор, распыляемый с помощью ультразвукового генератора аэрозолей, направляют в трубчатую печь со скоростью потока инертного газа-носителя 4 л/мин, где под воздействием температуры 600-1000°C самоинициируется экзотермическая реакция с образованием металлического порошка, состоящего из полых наноструктурированных микросфер.

Данный метод позволяет производить наноструктурированные порошки полых микросфер переходных металлов, а также интерметаллидов Fe-Ni, Ni-Cu, Co-Ni, Co-Cu со средним диаметром сфер ~1 мкм, толщиной стенок 20-100 нм и удельной поверхностью порядка 10 м2/г. Наноразмерность частиц продуктов горения и их высокая удельная поверхность обусловлены несколькими причинами:

- смешение реагентов в реакционном растворе происходит на молекулярном уровне, что обеспечивает малый масштаб гетерогенности исходной реакционной смеси;

- максимальная температура реакции в каждой капле (микрореакторе) аэрозоля достигает порядка 1000°C. Такая высокая температура способствует формированию нанокристаллических металлических микросфер без дополнительной термообработки;

- возникающая в процессе горения за счет присутствия избытка восстановителя восстановительная газообразная среда приводит к образованию фазы металла непосредственно в ходе синтеза без дополнительной стадии пост-обработки;

- интенсивное выделение большого количества газофазных продуктов препятствует агломерации твердофазных продуктов;

- высокая экзогермичность процесса синтеза способствует эффективному очищению поверхности получаемых продуктов микросфер от органических примесей.

Если температура трубчатой печи ниже 600°C, то синтезированный порошок представляет собой микросферы, состоящие частично из прореагировавшего конечного продукта в окисленной или восстановленной формах (оксид и металл) и обезвоженного аморфного геля, образованного компонентами реакционного раствора. Чем ниже температура печи, тем меньше конечного продукта в синтезируемом порошке. Температура трубчатой печи, равная 400°C, является критической для синтеза порошков, т.е. ниже данной температуры трубчатой печи образование порошка не осуществляется.

Если температура трубчатой печи выше 1000°C, т.е. выше диапазона температур, представленного в данном изобретении, то наблюдаются следующие закономерности для получаемых микросфер в связи с более интенсивной термической обработкой как аэрозоля реакционного раствора, так и синтезируемых микросфер, в связи с чем:

1) образуются микросферы неправильной формы и меньших размеров;

2) происходит спекание поверхности микросфер, следовательно, уменьшается удельная площадь поверхности;

3) размеры ОКР наночастиц металлов, составляющих поверхность полых микросфер, увеличиваются пропорционально повышению температуры трубчатой печи.

Увеличение скорости потока газа-носителя выше 4 л/мин при заданной температуре печи влечет к уменьшению времени пребывания частиц аэрозоля в высокотемпературном участке трубчатой печи, что может привести на высоких скоростях потока газа-носителя к невозможности прохождения экзотермической реакции внутри капель аэрозоля реакционного раствора, следовательно, порошок будет представлять собой микросферы обезвоженного реакционного геля.

Если соотношение химических реагентов реакционного раствора восстановитель/окислитель (ϕ) взять меньше чем ϕ=2, то конечным продуктом будут микросферы не металла, а оксида металла. Небольшое количество органического восстановителя в реакционном растворе способствует уменьшению температуры экзотермической реакции, в связи с чем конечным продуктом получается оксид металла. Также если использовать соотношение восстановитель/окислитель (ϕ) намного больше чем ϕ=2, то конечным продуктом получаются микросферы оксида металла, так как избыток количества органического восстановителя (топлива) приводит к снижению скорости экзотермической реакции и соответственно температуры синтеза в процессе горения, связанных с неполным прогоранием компонентов смеси и быстрым отводом тепла в окружающую среду от частиц аэрозоля реакционной смеси.

Используя возможность перерасчетов и грамотного переноса представленных технологических условий, представленных в данном изобретении, на другие определенные условия, путем масштабирования используемых конструкций трубчатой печи, ультразвукового ингалятора, а также варьирования скорости потока, химических реагентов в реакционной смеси, а также с изменением других необходимых параметров, можно достигнуть желаемый результат.

Пример 1.

Синтез наноструктурированных полых микросфер порошка металлического никеля состоит из следующих последовательных стадий:

Приготовление реакционного раствора 1 М смеси нитрата никеля и глицина, содержащей 20 мл Ni(NO3)2⋅6Н2О; 44 мл C2H5NO2. По мере расходования реакционного раствора в камеру ингалятора подливаются дополнительные партии реакционного раствора в заданном стехиометрическом соотношении. После чего при контролируемой подаче инертного газа-носителя (например, аргона или азота) 1-4 л/мин аэрозоль, генерируемый ультразвуковым ингалятором, из реакционного раствора поступает в трубчатую печь, где под воздействием температуры 600-1000°C происходит экзотермическая реакция в каждой капле аэрозоля. На выходе из трубчатой печи формируется микросферический порошок металлического Ni, улавливаемый пористым фильтром Шотта, подключенным к водоструйному насосу. Готовый продукт имеет высокую удельную поверхность 10 м2/г, средний диаметр микросфер 1 мкм (по данным растровой рентгеновской микроскопии) и состоит из наночастиц 21 нм (по данным порошковой рентгеновской дифракции).

Пример 2.

Синтез микросферического порошка металлической меди состоит из следующих последовательных стадий:

Приготовление реакционного раствора 1 М смеси нитрата меди и глицина, содержащего 20 мл Cu(NO3)2⋅6Н2О; 49 мл C2H5NO2. Дальнейшая процедура соответствует примеру 1. На выходе из трубчатой печи получается микросферический порошок Cu. Готовый продукт имеет высокую удельную поверхность 5 м2/г, средний диаметр микросфер 1 мкм (по данным растровой рентгеновской микроскопии) и состоит из наночастиц 29 нм (по данным порошковой рентгеновской дифракции).

Пример 3.

Синтез микросферического порошка металлического кобальта состоит из следующих последовательных стадий:

Приготовление реакционного раствора 1 М смеси нитрата кобальта и глицина, содержащего 20 мл Co(NO3)2⋅6Н2О; 66 мл C2H5NO2. Дальнейшая процедура соответствует примеру 1. На выходе из трубчатой печи формируется микросферический порошок Co с удельной поверхность 8 м2/г, средним диаметром микросфер 1 мкм (по данным растровой рентгеновской микроскопии) и состоит из наночастиц 23 нм (по данным порошковой рентгеновской дифракции).


Способ получения полых наноструктурированных металлических микросфер
Способ получения полых наноструктурированных металлических микросфер
Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 34.
20.04.2013
№216.012.3605

Способ получения многослойных энерговыделяющих наноструктурированных пленок для неразъемного соединения материалов

Изобретение относится к получению многослойных энерговыделяющих наноструктурированных пленок для неразъемного соединения чувствительных к нагреву материалов. Готовят экзотермическую смесь из порошков по крайней мере двух металлов II-IV, VIII групп периодической системы и/или порошки по крайней...
Тип: Изобретение
Номер охранного документа: 0002479382
Дата охранного документа: 20.04.2013
27.09.2013
№216.012.6e7e

Способ получения нанопорошка карбида кремния

Изобретение относится к области порошковой металлургии, в частности к технологии получения нанопорошка карбида кремния. Может применяться для изготовления абразивных и режущих материалов, конструкционной керамики и кристаллов для микроэлектроники, катализаторов и защитных покрытий. Исходную...
Тип: Изобретение
Номер охранного документа: 0002493937
Дата охранного документа: 27.09.2013
27.11.2013
№216.012.85b5

Способ получения многослойной ленты для тепловыделяющего элемента

При получении многослойной ленты для тепловыделяющего элемента перемешивают порошки исходных компонентов экзотермической смеси и активируют указанную смесь в механоактиваторе в течение 4,5-10 минут при центробежном ускорении движения шаров от 30 до 90 g и соотношении массы смеси к массе шаров...
Тип: Изобретение
Номер охранного документа: 0002499907
Дата охранного документа: 27.11.2013
20.02.2014
№216.012.a265

Способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где...
Тип: Изобретение
Номер охранного документа: 0002507288
Дата охранного документа: 20.02.2014
27.08.2014
№216.012.ef4c

Устройство для предупреждения и нейтрализации отравляющих веществ

Изобретение относится к средствам оперативного обнаружения отравляющих веществ и токсинов и моментальной их нейтрализации. Устройство содержит микропроцессорные комплекты первого 16 и второго 22 порядка, блок памяти эталонов 17, блоки для обнаружения отравляющих веществ и токсинов,...
Тип: Изобретение
Номер охранного документа: 0002527079
Дата охранного документа: 27.08.2014
20.12.2014
№216.013.11f4

Способ получения наноструктурированной реакционной фольги

Изобретение относится к области порошковой металлургии, в частности к технологии получения многослойных реакционных фольг. Может использоваться для соединения разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты...
Тип: Изобретение
Номер охранного документа: 0002536019
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1c09

Способ получения нитевидных кристаллов активного материала положительного электрода литий-воздушного аккумулятора

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KMnO(x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к...
Тип: Изобретение
Номер охранного документа: 0002538605
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5b67

Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30...
Тип: Изобретение
Номер охранного документа: 0002554940
Дата охранного документа: 10.07.2015
10.09.2015
№216.013.7668

Устройство для поглощения токсинов

Устройство предназначено для защиты зон скопления людей от отравляющих веществ и токсинов. Устройство для поглощения токсинов содержит микропроцессорный комплект, блоки анализа окружающей среды, блок запуска и блок блокирования всего комплекса электронной системы управления устройством....
Тип: Изобретение
Номер охранного документа: 0002561901
Дата охранного документа: 10.09.2015
+ добавить свой РИД