×
10.11.2014
216.013.05b3

Результат интеллектуальной деятельности: ФОТОВОЛЬТАИЧЕСКАЯ СТРУКТУРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковым структурам, используемым для преобразования солнечного излучения в электрическую энергию. Фотовольтаическая однопереходная структура представляет собой двухслойный компонент p-n гетероперехода a-SiC/c-Si. Слой аморфного карбида кремния n-типа проводимости с толщиной пленки 6-20 нм нанесен на предварительно подготовленную поверхность монокристаллической кремниевой подложки p-типа проводимости путем нереактивного магнетронного распыления в аргоне из твердотельной мишени SiC. Верхний электрод выполнен в виде контактной гребенки из серебра или меди и расположен непосредственно на слое a-SiC. Нижний электрод из серебра или меди расположен на обратной стороне подложки из монокристаллического кремния. Фотовольтаическая структура с использованием полированной, неразвитой поверхности подложки из монокристаллического кремния и без применения концентраторов солнечного излучения демонстрирует эффективность 7,83%. 4 ил., 1 пр.
Основные результаты: Фотовольтаическая однопереходная структура, содержащая слой карбида кремния n-типа проводимости, подложку из монокристаллической пластины Si ориентации (100) p-типа проводимости, верхний и нижний металлические электроды, отличающаяся тем, что представляет собой двухслойный компонент p-n гетероперехода a-SiC/c-Si, где слой аморфного карбида кремния n-типа проводимости с толщиной пленки 6-20 нм нанесен на предварительно подготовленную поверхность монокристаллической кремниевой подложки p-типа проводимости путем нереактивного магнетронного распыления в аргоне из твердотельной мишени SiC, верхний электрод выполнен в виде контактной гребенки из серебра или меди и расположен непосредственно на слое a-SiC, а нижний электрод из серебра или меди расположен на обратной стороне пластины монокристаллического кремния.

Изобретение относится к полупроводниковым фотовольтаическим структурам, используемым в электронике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности, экологии и др. для преобразования солнечного излучения в электрическую энергию, используемую для питания электронных приборов и электроприводов устройств и механизмов. Гетероструктуры полупроводниковых приборов не имеют альтернативы как источник электроэнергии для космических летательных аппаратов, являются экологически чистым средством получения электрической энергии.

В подавляющем большинстве случаев материалом солнечных элементов является кремний: 98.2% мощности действующих установок, из которых 38% - кристаллический кремний, 52% - поликристаллический, 5% - аморфный. Среди прочих материалов наибольшую часть, примерно 1.6%, занимают структуры на основе кадмия-теллура, а остальное - соединения элементов III-IV групп In, Ga, As, Sb, P и др., ячейки на основе полимеров, жидкостные фотовольтаические ячейки и т.д.

Наиболее эффективные солнечные элементы - многопереходные гетероструктуры, именуемые также каскадными или тандемными. Их конструкция основана на последовательном соединении ряда активных компонентов - элементарных солнечных ячеек или фотовольтаических ячеек, обеспечивающих эффективное преобразование солнечного излучения в электричество. Как правило, каждая ячейка такого гетерокаскада рассчитана на поглощение определенной части спектра солнечного излучения.

Выбор полупроводниковых материалов с последовательно уменьшающейся шириной запрещенной зоны обеспечивает эффективное преобразование энергии солнечного излучения в электрическую в полупроводниковом приборе, основанном на внутреннем фотоэффекте - генерации электронно-дырочной пары при поглощении фотона.

Карбид кремния SiC находит применение во многих отраслях науки и техники. Для различных модификаций SiC ширина запрещенной зоны может иметь значение в пределах от 2,4 до 3,34 эВ. Большие значения ширины запрещенной зоны позволяют создавать на его основе полупроводниковые приборы, сохраняющие работоспособность при температурах до 600°C. Кристаллическая структура карбида кремния сильно зависит от технологических условий получения, поэтому использование аморфных материалов ведет к снижению стоимости процесса получения солнечных элементов, фотовольтаических ячеек.

Известны p-i-n солнечные ячейки сложной структуры, включающие слой аморфного гидрогенизированного карбида кремния a-SiC:H с p-проводимостью, нанесенный на верхний полупрозрачный электрод в виде стеклянной подложки, покрытой слоем SnO2, далее нанесен микрокристаллический гидрогенизированный кремний µc-Si:H с n- проводимостью, а в качестве i-слоя - слой аморфного кремния a-Si. [Yoshihisa Tawada, Hideo Yamagishi, Mass-production of large size a-Si modules and future plan, Solar Energy Materials & Solar Cells 66 (2001) p.95-105]. Недостатком многопереходных ячеек сложной структуры является их дороговизна. Применение в качестве источников электроэнергии однопереходных фотовольтаических структур на основе аморфного карбида кремния ведет к снижению их стоимости.

Известна однопереходная солнечная ячейка, содержащая в качестве внешнего слоя p-типа гидрогенизированный аморфный a-SiC:H. Внешним электродом, нанесенным на стеклянную подложку, здесь также служит прозрачный проводящий оксид SnO2. В этой ячейке гетеропереход в p-i-n структуре на основе аморфных слоев гидрогенезированных карбида кремния и кремния a-SiC:H/a-Si:H демонстрирует эффективность преобразования солнечной энергии, равную 7.55% [Y. Hamakawa, Recent progress of the amorphous silicon solar cells and their technology. Journal de Physicque, Suppl №10, V.42, (1981), p.p.С4-1131].

В вышеприведенных источниках для получения пленок аморфного гидрогенизированного a-SiC:H использовались разновидности CVD технологий (Chemical vapor deposition - химическое парофазное осаждение), а именно - химическое парофазное осаждение с горячей нитью HWCVD/HFCVD (Hot wire chemical vapor deposition/hot filament CVD), также известное как каталитический Cat-CVD (Catalitic chemical vapor deposition) [Агеев О.А., Беляев А.Е., Болтовец Н.С., Киселев B.C., Конакова Р.В., Лебедев А.А.. Миленин В В., Охрименко О.Б., Поляков В.В., Светличный A.M., Чередниченко Д.И. Карбид кремния: технология, свойства, применение. Харьков: «ИСМА», (2010), С.532].

Известна описанная в источнике [Banerjee C, Haga K.; Miyajima S.; Yamada A.; Konagai M., Fabrication of µc-3C-SiC/c-Si Heterojunction Solar Cell by Hot Wire CVD System, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, on 7-12 May 2006, V.2, pp.1334-1337.] однопереходная фотовольтаическая структура на основе микрокристаллической гидрогенизированной пленки 3C-SiC:H, полученной методом химического осаждения с горячей нитью (HWCVD). Толщина пленки n-типа 3C-SiC:H на подложке p-типа Si составляла 200 нм и удельное сопротивление 1-10 Ом·см. Эффективность данной структуры составила 14.2%. Недостатком является сложная технология получения и значительная толщина пленки карбида кремния.

Известна структура из источника [J. Appl. Phys. 67, 6538 (1990); http://dx.doi.org/10.1063/1.345131 (6 pages) A new type of high efficiency with a low cost solar cell having the structure of а µc SiC/polycrystalline silicon heterojunction Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa], где микрокристаллическая пленка толщиной 70 нм µc-SiC n-типа проводимости на поликристаллической подложке Si p-типа проводимости была получена с применением плазмы, возбуждаемой циклотронным электронным резонансом, в сочетании с химическим осаждением из паровой фазы. А в качестве верхнего электрода использован сплав оксида индия и олова. Эффективность данной структуры составила 15.4%. К недостатком структуры можно отнести сложность технологии и толщину пленки карбида кремния микрокристаллической модификации.

За прототип принята структура из источника [A. Solangi, M.I. Chaudhry, Amorphous and Crystalline Silicon Carbide IV, Springer, Proceedings in Physics, Volume 71, (1992), pp 362-367], представляющая собой ячейку β n-SiC/p Si, с верхним электродом в виде металлической решетки и металлическим нижним электродом, где микрокристаллический слой карбида кремния n-типа проводимости получают методом химического осаждения из паровой фазы на подложку - монокристаллическую пластину Si ориентации (100) и p-типа проводимости. Эффективность данной структуры составила 7.7%. Недостатком является сложная технология, которая не позволяет получать толщину пленки менее 70-100 нм, не гарантирует возможность получения пленки карбида кремния аморфной модификации, а также является недостаточно экологически безопасной.

Задача - создание однопереходной фотовольтаической структуры гетероструктуры солнечного элемента на основе монокристаллического кремния p-типа, покрытого слоем аморфного карбида кремния n-типа проводимости.

Технический результат - эффективность фотовольтаической структуры не ниже, чем у прототипа, при толщине пленки аморфного карбида кремния n-типа проводимости в диапазоне 6-20 нм.

Дополнительный технический результат - более низкая стоимость фотовольтаической структуры и более экологичная технология ее получения.

Технический результат достигается за счет того, что в структуру, содержащую слой карбида кремния n-типа проводимости, подложку из монокристаллической пластины Si ориентации (100) p-типа проводимости, верхний и нижний металлические электроды, внесены следующие новые признаки:

- структура представляет собой двухслойный компонент p-n гетеропереход a-SiC/c-Si, на основе аморфного карбида кремния n-типа проводимости и монокристаллической кремниевой подложки p-типа проводимости;

- слой карбида кремния n-типа проводимости толщиной в диапазоне 6-20 нм представляет собой аморфную модификацию и нанесен на предварительно подготовленную поверхность монокристаллической кремниевой подложки p-типа проводимости путем нереактивного магнетронного распыления в аргоне из твердотельной мишени SiC;

- верхний электрод выполнен в виде контактной гребенки из серебра или меди;

- нижний электрод из серебра или меди расположен непосредственно на обратной стороне подложки из монокристаллического кремния.

Изобретение характеризуют следующие фигуры:

Фигура 1. Разрез фотовольтаической структуры (вид сбоку),

Фигура 2. Вид сверху на фотовольтаическую однопереходную структуру;

Фигура 3. Изображения, полученные на просвечивающем микроскопе JEM 2100, подтверждающие аморфную модификацию пленки SiC:

Фотовольтаическая структура представляет собой полупроводниковый однопереходный p-n солнечный элемент a-SiC/c-Si, включающий верхний электрод 1, выполненный в виде контактной гребенки из серебра или меди, слой 2 аморфного карбида кремния n-типа проводимости с толщиной в диапазоне 6-20 нм, нанесенный методом нереактивного магнетронного распыления из твердотельной мишени SiC на предварительно подготовленную поверхность подложки 3 из монокристаллического кремния ориентации (100) p-типа проводимости и нижний электрод 4 из серебра или меди, нанесенный непосредственно на обратную сторону подложки из монокристаллического кремния.

Конкретный пример выполнения.

Верхний электрод 1, выполненный в виде контактной гребенки из серебра или меди, нанесен на слой 2 аморфного карбида кремния. Слой 2 аморфного карбида кремния n-типа проводимости толщиной в диапазоне 6-20 нм нанесен методом нереактивного магнетронного распыления в аргоне из твердотельной мишени, представляющей собой синтезированный предварительно SiC, на предварительно подготовленную поверхность подложки 3 из монокристаллического кремния марки КДБ2 p-типа проводимости ориентации (100), толщиной 300 мкм, с удельным сопротивлением 2 Ом·см. На нижней обратной стороне подложки 3 из монокристаллического кремния марки КДБ2 нанесен нижний электрод 4 из серебра или меди.

В предложенной структуре аморфный SiC n-типа проводимости выступает в роли внешнего светопоглощающего слоя, поэтому не требуется нанесения дополнительных слоев концентраторов солнечного излучения.

Перед нанесением аморфного карбида кремния на предварительно подготовленную с целью удаления естественного слоя оксида кремния подложку 3 из монокристаллического кремния марки КДБ2 поверхность, со стороны, где наносится SiC, может быть отполирована, что положительно влияет на качество наносимой пленки.

С другой стороны, на развитой неполированной поверхности подложки поглощение солнечной энергии, а следовательно, и эффективность фотовольтаической структуры может возрасти.

Для улучшения контакта с металлом обратная поверхность подложки 3, на которую наносят второй электрод 4, может быть также отполирована, однако улучшение не столь значительно, поэтому допустимо наносить второй электрод 4 на неполированную поверхность подложки 3.

Аморфное состояние пленки карбида кремния подтверждено результатами дифракции электронного пучка в просвечивающем электронном микроскопе JEM 2100. Дифракционные кольца на фиг.3a свидетельствуют об отсутствии преобладающей ориентации в аморфной пленке SiC, выращенной на подложке Si (100), на фиг.3b явственно видна островковая структура аморфной пленки SiC.

Заявленная фотовольтаическая структура на основе гетероструктуры a-SiC/c-Si «аморфный карбид кремния - кремний p-типа» с использованием полированной, неразвитой поверхности подложки из монокристаллического кремния и без применения концентраторов солнечного излучения демонстрирует эффективность 7,83%.

Следовательно, поставленная задача по достижению заявленного технического результата решена.

Фотовольтаическая однопереходная структура, содержащая слой карбида кремния n-типа проводимости, подложку из монокристаллической пластины Si ориентации (100) p-типа проводимости, верхний и нижний металлические электроды, отличающаяся тем, что представляет собой двухслойный компонент p-n гетероперехода a-SiC/c-Si, где слой аморфного карбида кремния n-типа проводимости с толщиной пленки 6-20 нм нанесен на предварительно подготовленную поверхность монокристаллической кремниевой подложки p-типа проводимости путем нереактивного магнетронного распыления в аргоне из твердотельной мишени SiC, верхний электрод выполнен в виде контактной гребенки из серебра или меди и расположен непосредственно на слое a-SiC, а нижний электрод из серебра или меди расположен на обратной стороне пластины монокристаллического кремния.
ФОТОВОЛЬТАИЧЕСКАЯ СТРУКТУРА
ФОТОВОЛЬТАИЧЕСКАЯ СТРУКТУРА
ФОТОВОЛЬТАИЧЕСКАЯ СТРУКТУРА
Источник поступления информации: Роспатент

Показаны записи 41-48 из 48.
01.03.2019
№219.016.d094

Производное 3-(2,2,2-триметилгидразиний)пропионата - никотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее эндотелиопротекторной активностью

Изобретение относится к области органической хомии, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата-никотинат 3-(2,2,2-триметилгидразиний)пропионат калия (CH3)3NNHCH2CH2COOKRCOO где R=, обладающему эндотелиопротекторной активностью. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002465268
Дата охранного документа: 27.10.2012
19.04.2019
№219.017.31f7

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний) пропионата - бромникотинату 3-(2,2,2-триметилгидразиний) пропионата калия, (СН)NНСНСНСООКRСОО где , обладающему повышенной противоишемической...
Тип: Изобретение
Номер охранного документа: 0002458690
Дата охранного документа: 20.08.2012
19.04.2019
№219.017.31f8

Производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно - к новому химическому соединению, производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, (CH)NNHCHCHCOOKRCOO, где , обладающее противоишемической активностью. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002458054
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3216

Производное 3-(2,2,2-триметилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - глицинату 3-(2,2,2-триметилгидразиний) пропионата калия, (CH3)3NNHCH2CH2COOKRCOO где , обладающему противоишемической активностью. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002457198
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3217

Производное 3-(2,2,2-триметилгидразиний)пропионата - 5- гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, (CH3)3NHCH2CH2COOKRCOO, где обладающее противоишемической активностью. Технический...
Тип: Изобретение
Номер охранного документа: 0002457202
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3421

Способ получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий

Изобретение предназначено для оптимизации технологического процесса сверхпластической формовки изделий сложной формы. Способ включает отливку слитка, получение из него заготовки равноканальным угловым прессованием с противодавлением. Сокращение продолжительности формообразующих операций,...
Тип: Изобретение
Номер охранного документа: 0002465365
Дата охранного документа: 27.10.2012
29.06.2019
№219.017.9fc2

Способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания

Изобретение относится к медицине и описывает способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания, включающий выделение ДНК из периферической венозной крови, отличающийся тем, что проводят анализ полиморфизма гена рецептора фактора...
Тип: Изобретение
Номер охранного документа: 0002458349
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.a1af

Способ прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом

Изобретение относится к области медицины и касается способа прогнозирования интенсивности и резистентности болевого синдрома после операции видеолапароскопической холецистэктомии у больных хроническим калькулезным холециститом. Сущность способа заключается в том, что выделяют ДНК из...
Тип: Изобретение
Номер охранного документа: 0002461830
Дата охранного документа: 20.09.2012
Показаны записи 41-48 из 48.
10.08.2015
№216.013.6aa4

Способ получения микрокапсул лозартана калия в альгинате натрия

Способ получения микрокапсул лозартана калия в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Растворяют лозартан калия в хлороформе и диспергируют полученную смесь в присутствии препарата E472c при перемешивании 1000 об/с в суспензию альгината...
Тип: Изобретение
Номер охранного документа: 0002558855
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa5

Способ получения микрокапсул аминокислот в конжаковой камеди

Способ получения микрокапсул аминокислот в конжаковой камеди может быть использован в фармакологии, фармацевтике, медицине. Суспензию аминокислоты в диметилсульфоксиде диспергируют в суспензию конжаковой камеди в бутиловом спирте в присутствии препарата E472с при перемешивании 1300 об/сек....
Тип: Изобретение
Номер охранного документа: 0002558856
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa7

Способ получения микрокапсул аминокислот в ксантановой камеди

Изобретение относится к способу получения микрокапсул аминокислот в ксантановой камеди. Указанный способ характеризуется тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при...
Тип: Изобретение
Номер охранного документа: 0002558859
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.82d6

Способ определения жевательной эффективности пародонта зубов

Способ относится к медицине, а именно к стоматологии, и предназначен для использования при протезировании для предотвращения осложнений, связанных с перегрузкой опорных тканей пародонта. Проводят рентгенологическое исследование пациента с дефектом целостности зубной дуги. Определяют значение...
Тип: Изобретение
Номер охранного документа: 0002565097
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.840d

Способ получения микрокапсул аминокислот в альгинате натрия

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002565408
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fc5

Солнечный элемент на основе гетероструктуры смешанный аморфный и нанокристаллический нитрид кремния - кремний p-типа

Изобретение может быть использовано в космических летательных аппаратах и автономных системах, как высокопроизводительное экологически чистое средство получения электрической энергии в различных областях промышленности. Однопереходной солнечный элемент включает р-кремниевую подложку из кремния...
Тип: Изобретение
Номер охранного документа: 0002568421
Дата охранного документа: 20.11.2015
27.03.2016
№216.014.c5ba

Способ прогнозирования риска развития преэклампсии

Изобретение относится к области медицины, а именно к способу прогнозирования вероятности риска возникновения преэклампсии у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Сущность способа состоит в том, что осуществляют забор венозной крови,...
Тип: Изобретение
Номер охранного документа: 0002578425
Дата охранного документа: 27.03.2016
26.08.2017
№217.015.e5c4

Устройство оптического нагрева образца в установках магнетронного напыления

Изобретение относится к установке магнетронного напыления тонких пленок из карбидов или нитридов кремния на подложку, выполненную из полупроводникового материала, керамики или стекла. Установка содержит вакуумную камеру, размещенные в ней магнетрон, штатив и закрепленное на нем устройство для...
Тип: Изобретение
Номер охранного документа: 0002626704
Дата охранного документа: 31.07.2017
+ добавить свой РИД