×
10.11.2014
216.013.040e

Результат интеллектуальной деятельности: ГАЗОЖИДКОСТНЫЙ СЕПАРАТОР

Вид РИД

Изобретение

№ охранного документа
0002532436
Дата охранного документа
10.11.2014
Аннотация: Изобретение относится к области машиностроения и касается устройства газожидкостного сепаратора, используемого в маслосистемах энергетических газотурбинных установок для очистки от масла суфлируемого воздуха, выбрасываемого в атмосферу. Газожидкостный сепаратор содержит вертикальный корпус в виде внешнего цилиндра с установленным в нем внутренним цилиндром с отверстиями для отвода газа, размещенный между ними спиральный элемент с винтовой поверхностью, образующий спиральный канал, и устройства для подвода газожидкостной смеси в верхней части корпуса и отвода дегазированной жидкости в нижней части корпуса. Устройство для отвода жидкости выполнено в виде двух расположенных в нижней части внешнего цилиндра патрубков отвода жидкости, отделенных друг от друга перфорированной горизонтальной перегородкой. Один из патрубков расположен в основании внешнего цилиндра и направлен вниз, а другой патрубок отвода жидкости расположен касательно к боковой стенке внешнего цилиндра и установлен по направлению навивки спирального элемента, причем выход из бокового патрубка подключен касательно в верхнюю часть боковой стенки дополнительного цилиндрического корпуса с диаметром меньшим, чем диаметр внешнего цилиндра. Техническим результатом является повышение эффективности очистки газовых включений от жидкости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и касается устройства газожидкостного сепаратора, используемого в маслосистемах энергетических газотурбинных установок для очистки от масла суфлируемого воздуха.

Энергетические газотурбинные установки (ЭГТУ) широко используются на газоперекачивающих и электрических станциях.

Известен газожидкостный сепаратор, содержащий вертикальный корпус в виде внешнего цилиндра с установленным в нем внутренним цилиндром с отверстиями для отвода газа, размещенный между ними спиральный элемент с винтовой поверхностью, образующей спиральный канал и устройства для подвода газожидкостной смеси и отвода дегазированной жидкости (патент RU 2425709, МПК B01D 19/00, опубл. 10.08.2011 г.).

К недостаткам известного сепаратора следует отнести низкую эффективность очистки газовых включений от жидкости. Применительно к ЭГТУ, где в сепараторе происходит отделение воздуха от масла, низкая эффективность очистки приводит к уходу части масла, являющегося агрессивной жидкостью, в атмосферу, что ухудшает экологические характеристики ЭГТУ, кроме того, увеличивается непроизводительный расход масла.

Одной из причин указанного недостатка является то, что возникающее при криволинейном движении газожидкостной смеси в спиральном канале центробежное ускорение по мере перемещения ее в нижнюю часть протяженного внешнего цилиндра уменьшается, что снижает выталкивающую силу, действующую на газовые включения, в сторону оси внутреннего цилиндра. Чтобы обеспечить эффективную очистку газовых включений, по мере стекания газожидкостной смеси в нижнюю часть внешнего цилиндра необходимо интенсифицировать закрутку смеси, что можно осуществить, сокращая радиус закрутки, то есть уменьшая диаметр внешнего цилиндра, либо вместо внешнего цилиндра использовать внешний конус, обращенный вершиной вниз, но данное решение усложнит компоновку спиралевидного элемента с винтовой поверхностью.

Техническим результатом, на достижение которого направлено изобретение, является повышение эффективности очистки в сепараторе газовых включений от жидкости.

Заявленный технический результат достигается тем, что в газожидкостном сепараторе, содержащем вертикальный корпус в виде внешнего цилиндра с установленным в нем внутренним цилиндром с отверстиями для отвода газа, размещенный между ними спиральный элемент с винтовой поверхностью, образующий спиральный канал, и устройства для подвода газожидкостной смеси в верхней части корпуса и отвода дегазированной жидкости в нижней части корпуса, согласно изобретению устройство для отвода жидкости выполнено в виде двух расположенных в нижней части внешнего цилиндра патрубков отвода жидкости, отделенных друг от друга перфорированной горизонтальной перегородкой, один из которых расположен в основании внешнего цилиндра и направлен вниз, а другой патрубок отвода жидкости расположен касательно к боковой стенке внешнего цилиндра и установлен по направлению навивки спирального элемента, причем выход из бокового патрубка подключен касательно в верхнюю часть боковой стенки дополнительного цилиндрического корпуса с диаметром меньшим, чем диаметр внешнего цилиндра. Кроме того, устройство для подвода газожидкостной смеси выполнено в виде разветвляющегося, как минимум, на два канала, патрубка, каждый из которых подключен к отдельному цилиндрическому корпусу.

Выполнение устройства для отвода жидкости в виде двух расположенных в нижней части внешнего цилиндра патрубков отвода жидкости, отделенных друг от друга перфорированной горизонтальной сеткой, а также установка бокового патрубка касательно боковой стенке внешнего цилиндра по направлению навивки спирального элемента и с выходом, подключенным касательно в верхнюю часть боковой стенки дополнительного цилиндрического корпуса, позволит организовать перепуск части газожидкостной смеси, сохранившей запас кинетической энергии, в дополнительный цилиндрический корпус, что позволит более полно использовать эффект поля центробежных сил инерции и, как следствие, повысить эффективность очистки газовых включений от жидкости.

Выполнение дополнительного цилиндрического корпуса с диаметром, меньшим чем диаметр внешнего цилиндра (основного цилиндра), позволит увеличить угловую скорость вращающегося в нем потока газожидкостной смеси, усиливая эффект поля центробежных сил, что повышает эффективность очистки газовых включений от жидкости.

Для увеличения пропускной способности сепаратора, а также для сокращения вертикального его габарита, лимитирующего размещение сепаратора в маслосистеме ЭГТУ (сепаратор устанавливается над маслобаком, который расположен, как правило, в верхней точке установки), целесообразно устройство для подвода газожидкостной смеси выполнить в виде разветвляющегося, как минимум, на два канала, патрубка, каждый из которых подключен к отдельному цилиндрическому корпусу.

На прилагаемых чертежах изображен заявляемый газожидкостный сепаратор:

На фиг.1 - вид сверху;

На фиг.2 - изображена развертка по А-Б-Г-Д-Е фигуры 1;

На фиг.3 - спиральный элемент с винтовой поверхностью,

закрепленный на внутреннем цилиндре.

Газожидкостный сепаратор содержит вертикальный корпус в виде внешних цилиндров 1 с установленными внутрь них внутренними цилиндрами 2 с отверстиями 3 для отвода воздуха и размещенных между ними спиральных элементов 4 с винтовой поверхностью, образующих спиральные каналы 5. Устройство для подвода воздушномасляной смеси включает в себя патрубок 6, разветвляющийся на два канала 7, каждый из которых подключен в верхнюю часть отдельного внешнего цилиндра 1 касательно к его боковой поверхности.

Устройство для отвода очищенного от воздушных включений масла включает в себя два маслоотводящих патрубка 8, расположенных в нижней части внешних цилиндров 1 и отделенных от боковых патрубков 9 перфорированными горизонтальными перегородками 10. Маслоотводящие патрубки 8 установлены в основаниях 11 внешних цилиндров 1 и смотрят вниз, где расположен маслобак ЭГТУ, а боковые патрубки 9 расположены касательно на боковых стенках внешних цилиндров 1 и установлены по направлению навивки спиральных элементов 4. Выходы из боковых патрубков 9 подключены касательно к боковым стенкам в верхнюю часть дополнительных цилиндров 12, имеющих диаметр оснований меньший, чем диаметр оснований внешних цилиндров 1 (основных). Внутренний цилиндр 2 с установленным на нем спиральным элементом 4 крепится к верхнему основанию 13 внешнего цилиндра 1.

Устройство работает следующим образом.

При работе ЭГТУ воздушномасляная смесь из системы суфлирования двигателя поступает в патрубок 6 газожидкостного сепаратора, где она разделяется благодаря каналам 7 на два автономных потока воздушномасляной смеси с большим запасом кинетической энергии и заполняет спиральные каналы 5, образованные внутри внешних цилиндров 1, в которых благодаря криволинейной (винтообразной) поверхности спиральных элементов 4 закручивается. Возникает поле центробежных сил инерции, в котором более тяжелые частицы масла будут отбрасываться к боковой стенке внешних цилиндров 1, а пузырьки воздуха, в свою очередь, будут выдавливаться в их центральную зону, где расположены внутренние цилиндры 2, через отверстия 3 в которых воздух будет отводиться в окружающую атмосферу.

По мере движения воздушномасляной смеси вниз по винтовым поверхностям спиральных каналов 5 угловая скорость вращения потока воздушномасляной смеси вокруг оси внешнего цилиндра 1 падает (закрутка потока), следовательно, снижается центробежное ускорение, воздействующее на смесь, и ослабляется выталкивающая сила, действующая на воздушные включения.

При большой длине внешнего цилиндра 1 процесс очистки воздушных включений от масла в нижней его части почти прекращается из-за резкого ослабления поля центробежных сил инерции при том, что прилегающий к боковой стенке цилиндра слой воздушномасляной смеси имеет еще достаточный запас кинетической энергии.

Чтобы интенсифицировать процесс очистки воздуха, необходимо осуществить принудительную раскрутку потока воздушномасляной смеси, что происходит, когда расположенный вблизи боковой стенки внешнего цилиндра 1 слой смеси переправляется через боковые патрубки 9 в дополнительные цилиндры 12 с существенно меньшим диаметром оснований по сравнению с диаметром оснований внешних цилиндров 1 (основных), что приведет к увеличению угловой скорости вращения потока воздушномасляной смеси вокруг оси дополнительных цилиндров 12 и, следовательно, к росту центробежного ускорения, воздействующего на поток смеси, и увеличению выталкивающей силы, действующей на воздушные включения. При этом поток воздушномасляной смеси, расположенный ближе к внутреннему цилиндру 2 и имеющий меньший запас кинетической энергии, постепенно замедляется и опускается в нижнюю часть внешнего цилиндра 1 и, пройдя перфорированную горизонтальную перегородку 10, которая задерживает проход воздушных пузырьков вследствие явления поверхностного натяжения, попадает в маслобак ЭГТУ.

Реализация изобретения позволит повысить качество очистки газовых включений от жидкости за счет перепуска части газожидкостной смеси, сохранившей запас кинетической энергии, в дополнительный цилиндрический корпус с диаметром, существенно меньшим, чем диаметр основного цилиндрического корпуса.


ГАЗОЖИДКОСТНЫЙ СЕПАРАТОР
ГАЗОЖИДКОСТНЫЙ СЕПАРАТОР
ГАЗОЖИДКОСТНЫЙ СЕПАРАТОР
Источник поступления информации: Роспатент

Показаны записи 151-151 из 151.
10.04.2019
№219.016.ff53

Способ исследования динамических свойств вращающегося ротора

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют...
Тип: Изобретение
Номер охранного документа: 0002273836
Дата охранного документа: 10.04.2006
Показаны записи 161-170 из 174.
19.04.2019
№219.017.31f3

Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к газотурбинным двигателям, предназначенным для эксплуатации на сверхзвуковых самолетах. Газотурбинный двигатель содержит корпус, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках ротор не...
Тип: Изобретение
Номер охранного документа: 0002458233
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f9

Способ работы авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В заявленном изобретении авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, системы автоматического управления, подачи воздуха,...
Тип: Изобретение
Номер охранного документа: 0002458236
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3201

Маслобак

Маслобак относится к области смазки машин и двигателей и может быть использован в авиадвигателестроении, а именно в системе смазки сверхзвуковых маневренных самолетов. Внутри корпуса маслобака установлен масляный фильтр, корпус которого торцевыми основаниями жестко зафиксирован относительно...
Тип: Изобретение
Номер охранного документа: 0002456462
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3273

Героторный насос

Героторный насос относится к области авиадвигателестроения и, в частности, к маслонасосам системы смазки авиационного газотурбинного двигателя. Героторный насос содержит приводной вал 6, установленную на нем по меньшей мере одну пару эксцентрично расположенных шестерен 2 и 3 и элементы осевой...
Тип: Изобретение
Номер охранного документа: 0002402691
Дата охранного документа: 27.10.2010
19.04.2019
№219.017.3277

Осевой героторный насос

Осевой героторный насос относится к области авиадвигателестроения и, в частности, к маслонасосам системы смазки авиационного газотурбинного двигателя. Осевой героторный насос содержит приводной вал 3, установленную на нем по меньшей мере одну пару эксцентрично расположенных шестерен 2 и 5,...
Тип: Изобретение
Номер охранного документа: 0002402690
Дата охранного документа: 27.10.2010
19.04.2019
№219.017.3459

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к авиадвигателестроению, а именно к маслосистемам двигателей маневренных самолетов. Масляная система содержит масляные полости упорного подшипника ротора и коробки двигательных агрегатов, нижние части которых снабжены...
Тип: Изобретение
Номер охранного документа: 0002468227
Дата охранного документа: 27.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
13.06.2019
№219.017.80c2

Центробежно-шестеренный насос

Изобретение относится к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос содержит шестерни 2, размещенные в расточках корпуса 1 и установленные на валах 3, расположенных в опорных подшипниках 4, каналы 9,...
Тип: Изобретение
Номер охранного документа: 0002691269
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.8a2a

Масляная система авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационного двигателя, предназначенного к установке на сверхзвуковые самолеты, летающие при скоростях (М>2,3), и позволяет наиболее рационально использовать незначительный хладоресурс топлива, потребляемого...
Тип: Изобретение
Номер охранного документа: 0002402686
Дата охранного документа: 27.10.2010
10.07.2019
№219.017.ad16

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя (ГТД) относится к области авиадвигателестроения, а именно к маслосистеме ГТД маневренного самолета. Технический результат - увеличение продолжительности фигурного полета самолета в случае возникновения на нем околонулевых перегрузок....
Тип: Изобретение
Номер охранного документа: 0002383753
Дата охранного документа: 10.03.2010
+ добавить свой РИД