×
10.10.2014
216.012.fc65

Результат интеллектуальной деятельности: МОНИТОР МНОГОФАЗНОЙ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002530459
Дата охранного документа
10.10.2014
Аннотация: Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения. Технический результат - повышение производительности и точности измерений. 1 ил.
Основные результаты: Монитор многофазной жидкости, содержащий обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, отличающийся тем, что дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения.

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред, например жидкого углеводорода, воды и газа, протекающих в одной трубе, например, от скважины к сепаратору или смеси воды и пара в системе охлаждения атомной станции и может быть использовано для контроля потоков с переменным расходом, в частности, при контроле состояния разработки нефтяных и газовых месторождений путем измерения производительности каждой скважины в группе или в системах контроля системы охлаждения атомных станций.

Контроль параметров и состава прокачиваемой по трубопроводу многофазной жидкости на нефтяных и газовых месторождениях необходим для правильной эксплуатации скважины и режима добычи нефти. Он позволяет установить нарастание потока нежелательных фракций, таких как вода или газ, и вовремя предпринять меры по улучшению ситуации.

Контроль параметров системы охлаждения атомных станций важен, прежде всего, для обеспечения их безопасной эксплуатации.

Измерение параметров потоков многофазных жидкостей в трубопроводах является серьезной проблемой в нефтяной промышленности. При добыче нефти по трубопроводу, ведущему из скважины, вместе с нефтью прокачивается вода различной солености и сопутствующий газ. Кроме воды, нефтяной и газовой компонент могут присутствовать также песок и твердые углеводороды. Многофазные измерения должны проводиться при объеме газовой фракции в интервале 0-99% и при обводненности нефти в интервале 0-90%. Относительная погрешность измерения расходов жидкого и газового потоков не должна превышать 5-10%, а абсолютная погрешность измерения обводненности должна находиться в пределах 2%. Требования к точности измерения повышаются при измерении нескольких объединенных потоков.

Для точного измерения потока различных фаз смеси нефть/вода/газ необходим многофазный расходомер, надежно работающий при различных режимах течения, включая как потоки с высоким содержанием воды, так и потоки с высоким содержанием нефти в широком диапазоне солености воды и вязкости нефти.

Существуют многофазные расходомеры и способы контроля с использованием нейтронного излучения. Эти способы основаны, прежде всего, на возможности определения химического состава среды по ядерным реакциям, происходящим с участием нейтронов и сопровождающихся излучением гамма-квантов определенной энергии. Так, например, при облучении воды быстрыми нейтронами с энергией больше 10 МэВ происходит активация кислорода с периодом полураспада 7,2 с и излучением гамма-квантов с энергией 6,1 МэВ (68,8%) и 7,1 МэВ (4,7%). Неупругое рассеяние быстрых нейтронов на углероде, входящем в состав углеводородов, приводит к излучению мгновенных гамма-квантов с энергией 4,43 МэВ. Присутствие серы и других элементов также может быть установлено по энергии гамма-квантов, излучаемых в результате неупругого рассеяния быстрых нейтронов.

Быстрые нейтроны в водородосодержащей среде быстро замедляются. Образующиеся тепловые нейтроны испытывают на водороде радиационный захват, который сопровождается излучением гамма-квантов с энергией 2,23 МэВ. При наличии в воде растворенной соли тепловые нейтроны будут также эффективно поглощаться ядрами атомов хлора, вследствие чего время их жизни в такой среде будет зависеть от их количества. Образующийся при этом изотоп хлор-36 излучает в среднем около 3 гамма-квантов с суммарной энергией около 8 МэВ. Благодаря присутствию хлора в высокоминерализованной воде спектр гамма-излучения обогащается высокоэнергетическими компонентами.

Известна аппаратура для «Анализа жидкостей» [Патент GB №2182143, МПК: G01N 23/222, 1986. Аналог], включающая источник быстрых нейтронов для возбуждения атомов жидкости, гамма-спектрометр для регистрации спектра гамма-лучей от возбужденных атомов, средства для измерения плотности жидкости, средства для определения состава жидкости, чувствительные к сигналам от спектрометра и от средств измерения плотности, средства для измерения скорости жидкости, включающие импульсный источник очень быстрых нейтронов для возбуждения атомов жидкости и детектор гамма-лучей от возбужденных атомов, располагаемый необходимым для измерения скорости образом, средства измерения плотности включают гамма-источник, располагаемый так, чтобы гамма-лучи проходили через жидкость, и сцинтиллятор, располагаемый так, чтобы принимать гамма-лучи, а также средства для определения плотности жидкости по ослаблению гамма-лучей.

Недостатком аналога является сложность обслуживания аппаратуры из-за того, что средства измерения плотности, состава и скорости жидкости используют несколько источников излучений: ампульный гамма-источник (137Cs), ампульный источник быстрых нейтронов (241Am/Be) и импульсный источник очень быстрых нейтронов на основе нейтронной трубки; сравнительно низкая точность и надежность измерений из-за того, что измерение плотности жидкости проводится только по ослаблению гамма-излучения, а измерения плотности, состава и скорости жидкости проводятся с помощью разных источников, в разных сечениях трубопровода и без мониторирования источников излучений.

Известен «Монитор многофазной жидкости» [Патент GB №2332937, G01N 23/222, 1997. Прототип], включающий средства облучения быстрыми нейтронами от трубки, генерирующей быстрые нейтроны, средства регистрации мгновенных гамма-лучей, излучаемых из области облучения, средства, обеспечивающие сигналы, характеризующие энергетический спектр мгновенных гамма-лучей, трубопровод с возможностью его заполнения прокачиваемой или калибровочной жидкостью, средства контроля содержимого облучаемой области и анализирующие средства для определения характеристик прокачиваемой жидкости, используя сигналы, характеризующие спектры, полученные для прокачиваемой жидкости и калибровочных жидкостей.

Недостатками прототипа являются сравнительно низкая точность измерений из-за того, что облучение прокачиваемой и калибровочной жидкостей проводится не одновременно, и сравнительно низкая производительность из-за необходимости прекращения, время от времени, измерения прокачиваемой жидкости и проведения поочередно измерений нескольких калибровочных жидкостей.

Техническим результатом изобретения является: повышение производительности и точности измерений за счет одновременного облучения прокачиваемой и калибровочных жидкостей, не требующего очередности измерений каждой жидкости и обеспечивающего независимость результатов измерений от нестабильности работы нейтронного источника и электронных блоков устройства, а также от нестабильности характеристик потока многофазной жидкости.

Технический результат достигается тем, что монитор многофазной жидкости, содержащий обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения.

Сущность изобретения поясняется на чертеже, где представлено устройство монитора с тремя дополнительными трубопроводами, предназначенными для их заполнения калибровочными жидкостями: 1 - обходной трубопровод, 2, 3 и 14 - дополнительные трубопроводы; 4, 5 и 6 - входные патрубки соответственно для обходного трубопровода 1 и дополнительных трубопроводов 2 и 3; 7, 8 и 9 - выходные патрубки соответственно для обходного трубопровода 1 и дополнительных трубопроводов 2 и 3; 10 - гамма-спектрометры; 11 - полость, 12 - генератор 14 МэВ нейтронов; 13 - узел для соединения и фиксации трубопроводов 1-3 и 14 между собой.

Измеритель скорости потока (на чертеже не показан) устанавливается на обходной трубопровод 1 на расстоянии от генератора 14 МэВ нейтронов 12 по направлению течения многофазной жидкости. Скорость потока многофазной жидкости определяют по времени между окончанием кратковременного (не более 1 с) облучения многофазной жидкости, содержащей воду, и моментом появления в многоканальном временном анализаторе (на чертеже не показан) сигнала от измерителя скорости потока (на чертеже не показан), вызванного гамма-квантами, исходящими от возбужденных ядер кислорода-16 с энергией 6,1 МэВ (68,8%) и 7,1 МэВ (4,7%) и периодом полураспада 7,2 с. Для регистрации гамма-квантов используют детекторы гамма-излучения и, в частности, сцинтилляционный детектор с кристаллом NaI.

Расстояние L между генератором 14 МэВ нейтронов 12 и измерителем скорости потока (на чертеже не показан) выбирают, исходя из предполагаемой скорости потока многофазной жидкости V и времени облучения t<1 с, согласно соотношению (I):

Обходной трубопровод 1 с помощью патрубков 4, 7 и запорной арматуры (на чертеже не показана), включающей Т-образные трубные вставки, вентили и гибкие и/или жесткие металлические рукава, присоединяется к основному трубопроводу (на чертеже не показан), используемому для прокачки многофазной жидкости. Дополнительные трубопроводы 2, 3 и 14 подключаются с помощью патрубков и запорной арматуры (на чертеже не показана) к резервуарам с калибровочными жидкостями (на чертеже не показаны). Количество дополнительных трубопроводов равно количеству применяемых калибровочных жидкостей. При измерении многофазной жидкости в условиях нефтедобывающей скважины в качестве калибровочных жидкостей могут использоваться керосин, имитирующий жидкий углеводород, и вода. Может также использоваться смесь керосина и воды или вода различной солености и другие жидкости. Калибровочные жидкости хранят в резервуарах (на чертеже не показаны) и прокачивают по дополнительным трубопроводам 2, 3 и 14 или заполняют эти трубопроводы с помощью жидкостных насосов (на чертеже не показаны), входящих в состав поверочного оборудования (на чертеже не показано).

Полость 11, связанная с внешним пространством, обеспечивает возможность обслуживания генератора 14 МэВ нейтронов 12 без разборки устройства и прекращения потока многофазной жидкости.

Генератор 14 МэВ нейтронов 12 служит для одновременного облучения многофазной и калибровочных жидкостей в трубопроводах 1, 2, 3 и 14 быстрыми нейтронами и устанавливается для этого внутри полости 11 соосно с ней. Блоки питания генератора 14 МэВ нейтронов 12, электронных блоков анализатора жидкости и измерителя скорости потока (на чертеже не показаны) располагаются снаружи устройства. Излучение генератора 14 МэВ нейтронов 12 симметрично относительно его оси, поэтому плотность нейтронного потока на поверхности всех трубопроводов известна в любой момент времени и обратно пропорциональна квадрату расстояния между источником нейтронов и облучаемой областью. При этом результаты измерений гамма-спектров для многофазной и калибровочных жидкостей, получаемые с помощью гамма-спектрометров 10, не зависят от нестабильности выхода генератора 14 МэВ нейтронов 12 и от временного дрейфа электронных блоков анализатора жидкости (на чертеже не показаны).

Гамма-спектрометры 10, входящие в состав анализатора жидкости, служат для измерения спектра гамма-излучения, возникающего в многофазной и калибровочных жидкостях при их облучении быстрыми нейтронами. Они обеспечены коллиматорами гамма-излучения (на чертеже не показаны) и располагаются на поверхности трубопроводов 1-3 и 14 симметрично относительно генератора 14 МэВ нейтронов 12 так, чтобы регистрировать гамма-излучение, исходящее из области облучения в соответствующем трубопроводе и не регистрировать гамма-излучение, исходящее из генератора 14 МэВ нейтронов 12 и из соседних трубопроводов. Гамма-спектрометры 10 подключены к анализатору спектра (на чертеже не показан), данные с которого передаются для обработки в микрокомпьютер (на чертеже не показан).

Устройство подключается к действующему трубопроводу с помощью патрубков 4, 7, а также запорной арматуры и работает следующим образом. Обеспечивают электропитанием генератор 14 МэВ нейтронов 12, гамма-спектрометры 10, анализатор спектра (на чертеже не показан), микрокомпьютер (на чертеже не показан), измеритель скорости потока (на чертеже не показан), многоканальный временной анализатор (на Чертеже не показан) и жидкостные насосы (на Чертеже не показаны). Многофазная жидкость прокачивается по обходному трубопроводу 1, а калибровочные жидкости заполняют дополнительные трубопроводы 2, 3 и 14.

При измерении фракционного состава многофазная жидкость, находящаяся в обходном трубопроводе 1, и калибровочные жидкости в дополнительных трубопроводах 2, 3 и 14 облучают быстрыми нейтронами от генератора 14 МэВ нейтронов 12, работающего в частотном режиме. Быстрые нейтроны, взаимодействуя с атомами веществ, входящих в состав жидкостей, приводят к появлению во время импульса гамма-излучения неупругого рассеяния, спектр которого целиком определяется составом облучаемой жидкости и измеряется с помощью гамма-спектрометров 10 и анализатора спектра (на чертеже не показан). Данные о спектрах передаются для обработки в микрокомпьютер. Время облучения при измерении фракционного состава многофазной жидкости может составлять десятки минут.

При измерении скорости потока многофазной жидкости в обходном трубопроводе 1 генератор 14 МэВ нейтронов 12 включают на время t<1 с, а затем выключают. С помощью многоканального временного анализатора (на чертеже не показан) измеряют интервал времени Δt между моментом окончания облучения многофазной жидкости в обходном трубопроводе 1 и появлением сигнала на выходе измерителя скорости потока (на чертеже не показан), вызванного гамма-лучами, исходящих от активированных ядер кислорода-16.

Производят обработку полученных данных с помощью микрокомпьютера, оснащенного необходимым программным обеспечением, позволяющим определить фракционный состав, скорость потока и массовый расход многофазной жидкости.

Фракционный состав и плотности фракций определяют путем сравнения гамма-спектров, полученных от многофазной и калибровочных жидкостей.

Скорость потока многофазной жидкости V определяют с помощью выражения (2):

где L - расстояние между генератором 14 МэВ нейтронов 12 и измерителем скорости потока (на чертеже не показан). Δt - интервал времени между моментом окончания облучения многофазной жидкости в обходном трубопроводе 1 и появлением сигнала на выходе измерителя скорости потока (на чертеже не показан).

Массовый расход определяют, используя данные об объеме, плотности и скорости потока углеводородной фракции многофазной жидкости.

Монитор многофазной жидкости, содержащий обходной трубопровод с возможностью его соединения с трубопроводом для прокачки многофазной жидкости, резервуары для калибровочных жидкостей, жидкостные насосы, анализатор жидкости, измеритель скорости потока, анализатор жидкости включает генератор 14 МэВ нейтронов и гамма-спектрометры, располагаемые на обходном трубопроводе и подключенные к анализатору спектра, связанному с микрокомпьютером, измеритель скорости потока располагается на обходном трубопроводе на расстоянии от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости и подключен к многоканальному временному анализатору, синхронизованному с генератором 14 МэВ нейтронов, отличающийся тем, что дополнительно содержит трубопроводы, соединенные с резервуарами для калибровочных жидкостей посредством жидкостных насосов, количество этих трубопроводов равно количеству калибровочных жидкостей, трубопроводы располагаются параллельно обходному трубопроводу и образуют вместе с ним полость, связанную с внешним пространством, генератор 14 МэВ нейтронов располагается внутри полости, гамма-спектрометры устанавливаются на всех трубопроводах, входят в состав анализатора жидкости и подключены к анализатору спектра, их количество равно или больше количества трубопроводов, измеритель скорости потока располагается на обходном трубопроводе на расстоянии L>V×t от генератора 14 МэВ нейтронов по направлению потока многофазной жидкости, где V - скорость потока многофазной жидкости, a t - время ее облучения.
МОНИТОР МНОГОФАЗНОЙ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 191-198 из 198.
19.06.2019
№219.017.8b0b

Устройство дуговой защиты с определением местоположения и мощности электрической дуги

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Устройство содержит N фотодетекторов, подключенных к входам аналого-цифровых преобразователей (АЦП) микропроцессора, N выходов которого подключены к входам соответствующих N исполнительных...
Тип: Изобретение
Номер охранного документа: 0002446535
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9a92

Сигнализатор избыточного давления, способ формирования профиля мембраны для сигнализатора избыточного давления

Сигнализатор избыточного давления и способ формирования профиля мембраны для него относятся к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначены для предотвращения перегрузки. В корпусе сигнализатора избыточного давления, в котором...
Тип: Изобретение
Номер охранного документа: 0002245526
Дата охранного документа: 27.01.2005
29.06.2019
№219.017.9ff7

Комплекс программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, за счет уменьшения задержки переключения на резерв при отказах сетевого оборудования и исключения потери данных. Комплекс программно-аппаратных средств автоматизации контроля и управления...
Тип: Изобретение
Номер охранного документа: 0002450305
Дата охранного документа: 10.05.2012
29.06.2019
№219.017.a0e2

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности, быстрое переключение на резервное оборудование, освобождение вычислительных ресурсов от задач управления резервированием. Он достигается тем, что в комплексе средств автоматизации...
Тип: Изобретение
Номер охранного документа: 0002431174
Дата охранного документа: 10.10.2011
29.06.2019
№219.017.a0f6

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности системной шины, повышение скорости сбора данных технологического процесса, повышение отказоустойчивости. Он достигается тем, что в комплексе программно-аппаратных средств...
Тип: Изобретение
Номер охранного документа: 0002430400
Дата охранного документа: 27.09.2011
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
14.05.2023
№223.018.5591

Сейсмометр

Изобретение относится к сейсмометрам. Сущность: сейсмометр содержит корпус (1), два упругих элемента (2) между кронштейном (3) и корпусом (1), две магнитные системы (4). Магнитные системы (4) состоят из последовательно соединенных цилиндрических магнитопроводов (5), постоянного магнита (6)...
Тип: Изобретение
Номер охранного документа: 0002738733
Дата охранного документа: 16.12.2020
16.05.2023
№223.018.6236

Радиационный монитор нейтронного излучения

Изобретение относится к области регистрации радиоактивных излучений. Радиационный монитор содержит блок детектирования, при этом блок детектирования содержит пропорциональный счетчик нейтронов на основе Не, помещенный в полиэтилен, окруженный слоем кадмия толщиной 1-1,5 мм, соединен с...
Тип: Изобретение
Номер охранного документа: 0002789748
Дата охранного документа: 07.02.2023
Показаны записи 171-179 из 179.
29.05.2019
№219.017.69c0

Нейтронный детектор

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный датчик содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002469353
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69cb

Нейтронный детектор

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный детектор содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002469354
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69cc

Нейтронный детектор

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный детектор содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002469355
Дата охранного документа: 10.12.2012
01.06.2019
№219.017.7248

Устройство для измерения нейтронной пористости

Использование: для измерения нейтронной пористости пластов горных пород в скважинах. Сущность изобретения заключается в том, что устройство определения нейтронной пористости включает в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном...
Тип: Изобретение
Номер охранного документа: 0002690095
Дата охранного документа: 30.05.2019
09.06.2019
№219.017.7d85

Нейтронный датчик

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный датчик содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002470329
Дата охранного документа: 20.12.2012
29.06.2019
№219.017.9d4e

Двухкоординатный призматический детектор

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д. Технический результат - повышение эффективности регистрации, расширение...
Тип: Изобретение
Номер охранного документа: 0002354995
Дата охранного документа: 10.05.2009
29.06.2019
№219.017.9d8b

Призматический детектор

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д. Технический результат - экспресс-определение координаты заряженной...
Тип: Изобретение
Номер охранного документа: 0002356068
Дата охранного документа: 20.05.2009
29.06.2019
№219.017.9f9a

Система неразрушающего контроля изделий

Использование: для неразрушающего контроля изделий. Сущность: заключается в том, что система неразрушающего контроля изделий содержит точечный источник излучения, узел возвратно-поступательного перемещении объекта контроля, матрицу детекторов и блок управления и обработки информации, при этом...
Тип: Изобретение
Номер охранного документа: 0002470287
Дата охранного документа: 20.12.2012
22.07.2020
№220.018.3565

Способ одновременного определения плотности и пористости горной породы

Изобретение относится к способам определения геофизических параметров пластов горных пород с использованием аппаратуры импульсного нейтрон-гамма-каротажа. Технический результат – одновременное определение плотности и пористости горной породы. Сущность изобретения заключается в том, что способ...
Тип: Изобретение
Номер охранного документа: 0002727091
Дата охранного документа: 17.07.2020
+ добавить свой РИД