×
29.05.2019
219.017.69cc

НЕЙТРОННЫЙ ДЕТЕКТОР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002469355
Дата охранного документа
10.12.2012
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный детектор содержит источник заряженных частиц, возникающих под действием нейтронного излучения, при этом источник заряженных частиц выполнен из стабильного не радиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, причем источник и/или поглотитель заряженных частиц электрически подключены к затворам полевых транзисторов, а полевой транзистор соединен со схемой регистрации изменения сопротивления канала транзистора. Полевые транзисторы включены в противоположные плечи мостовой электрической схемы. Технический результат - исключение делящегося вещества; уменьшение чувствительности к фоновым излучениям; обеспечение измерения временной зависимости потока в случае импульсных нейтронных источников; обеспечение многократности использования; упрощение технической реализации. 1 з.п. ф-лы, 1 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников нейтронов, в научных исследованиях.

Известен детектор нейтронов, который содержит резистивный элемент в виде таблетки из делящегося материала с низкой теплопроводностью и большим удельным электросопротивлением. Под действием излучения элемент нагревается и изменяется его электросопротивление, которое измеряется. Патент Российской Федерации №1526403, МПК: G01T 3/00, 1997. Недостатками аналога являются: использование радиоактивных материалов, низкий уровень генерируемого электрического сигнала, низкая помехозащищенность к электромагнитным наводкам, отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов.

Известен детектор нейтронов, включающий корпус, заполненный люминесцирующей газовой средой и делящимся материалом, и фотоприемник. В одном из торцов корпуса размещен волоконный световод, соединенный с регистрирующей системой посредством фотоприемника с фильтром, при этом делящийся материал выполнен в виде слоя и нанесен на боковую поверхность корпуса. Полезная модель Российской Федерации №30008, МПК: G01T 1/16, 2003. Недостатками аналога являются: использование радиоактивных материалов; низкая эффективность регистрации из-за относительно малого сечения реакции деления; отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов; энергозависимость.

Известен детектор нейтронов, содержащий чувствительный элемент из материала, в состав которого входит делящийся под действием нейтронов материал, и энергонезависимый преобразователь энергии с электрическим выходом, в котором чувствительный элемент выполнен из материала с эффектом памяти формы, энергонезависимый преобразователь включает два одинаковых пьезоэлектрических генератора, включенных электрически параллельно встречно, при этом чувствительный элемент установлен с возможностью взаимодействия с указанными генераторами в процессе формовосстановления при превышении потоком нейтронов критического уровня через дополнительно введенный упругий элемент, механически связанный с чувствительным элементом и размещенный с зазорами между пьезоэлектрическими генераторами. Патент Российской Федерации №2332689, МПК: G01T 3/00, 2008. Прототип.

Недостатками прототипа являются: использование делящегося вещества; низкая эффективность регистрации из-за относительно малого сечения реакции деления; невозможность многократного использования и изменения порога срабатывания без замены чувствительного элемента и пористого держателя; ограниченное быстродействие; невозможность измерения временной зависимости потока в случае импульсных нейтронных источников; сложность изготовления и большое количество конструктивных элементов.

Задачами изобретения являются: исключение делящегося вещества; уменьшение чувствительности к фоновым излучениям; обеспечение измерения временной зависимости потока в случае импульсных нейтронных источников; обеспечение многократности использования.

Техническим результатом является: исключение делящегося вещества; уменьшение чувствительности к фоновым излучениям; обеспечение измерения временной зависимости потока в случае импульсных нейтронных источников; обеспечение многократности использования; упрощение технической реализации.

Технический результат достигается тем, что в нейтронном детекторе, содержащем источник заряженных частиц, возникающих под действием нейтронного излучения, источник заряженных частиц выполнен из стабильного не радиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, причем источник и/или поглотитель заряженных частиц электрически подключены к затворам полевых транзисторов, а полевой транзистор соединен со схемой регистрации изменения сопротивления канала транзистора. Схема регистрации изменения сопротивления выполнена в виде мостовой электрической схемы, а полевые транзисторы включены в ее противоположные плечи.

Сущность изобретения поясняется чертежом, где: 1 - корпус датчика нейтронов, 2 - источник заряженных частиц, возникающих под действием нейтронного излучения, 3 - поглотитель заряженных частиц. Датчик нейтронов включен в мостовую схему. 4 - полевой транзистор, 5 - электрическая схема для измерения тока в диагонали мостовой схемы, возникающего при разбалансировке моста. Плечами моста являются собственно каналы транзисторов 4 и резисторы R1, и R2. Резистор R1 служит для начальной балансировки моста.

Нейтронный детектор работает следующим образом. Нейтроны, попадающие в материал источника заряженных частиц 2, вызывают ядерную реакцию и излучение заряженных частиц, часть из которых выходит и в сторону поглотителя заряженных частиц 3. Источник заряженных частиц 2 и поглотитель заряженных частиц 3 набирают заряд противоположных знаков. Появление заряда на затворе каждого из полевых транзисторов 4 приводит к изменению сопротивления их каналов.

Для измерения сопротивления каналов может быть применена, например, мостовая электрическая схема. Изменение сопротивлений каналов транзисторов 4 приводит к разбалансировке мостовой схемы и появлению тока в ее диагонали. Изменение сопротивления в двух плечах мостовой схемы происходит синхронно и в противоположных направлениях. Синхронное изменение сопротивлений каналов транзисторов 4 обеспечивает увеличение чувствительности датчика по отношению к устройству с одним транзистором, подключенным либо к источнику 2, либо к поглотителю 3, так как уменьшает влияние собственных шумов транзистора.

При подключении и источника 2, и поглотителя 3 к затворам транзисторов происходит удвоенное изменение тока в диагонали мостовой схемы по сравнению с подключением только источника, или поглотителя. Шумовой сигнал при таком подключении возрастает лишь в 20.5 раз по причине статистической независимости шумов разных транзисторов.

Восстановление исходного состояния детектора происходит за счет компенсации электрических зарядов источника 2 и поглотителя 3 в результате электрического разряда, возникающего между источником 2 и поглотителем 3 при превышении разности потенциалов между ними выше значения напряжения пробоя. Для этого источник и/или поглотитель может быть снабжен заостренным электродом (на чертеже не показан).

Нейтронный датчик размещен в вакуумируемом корпусе 1. Корпус 1 откачивают до давления не более нескольких десятков миллиметров ртутного столба. В корпусе 1 установлены проходные электрические разъемы для подключения источника 2 и поглотителя заряженных частиц 3 к затворам полевых транзисторов. Откачивание воздуха из корпуса 1 датчика является необходимым условием его работоспособности. При наличии молекул воздуха между источником 2 и поглотителем 3 сила электрического поля между ними компенсируется полем, обусловленным поляризацией молекул воздуха.

Чувствительность нейтронного датчика зависит от материала, толщины и площади слоя источника заряженных частиц 2, площади поглотителя 3, входной емкости полевых транзисторов.

Материал источника 2 заряженных частиц определяет количество единичных зарядов, выходящих из источника в сторону поглотителя 3. Под действием быстрых нейтронов обычно происходит несколько ядерных реакций с излучением различных заряженных частиц. Расчеты показывают, что для датчика быстрых нейтронов лучшими материалами для источника 2 с точки зрения максимального выхода заряда на единичный нейтрон являются изотопы В11 и Са40.

Поскольку поток быстрых нейтронов практически не меняется по глубине слоя источника 2, чувствительность датчика нейтронов увеличивается при увеличении толщины слоя источника до толщины примерно 100 мкм в случае В11 и 1500 мкм в случае Са40 и далее остается постоянной.

В таблице приведены максимальные выходы единичного заряда из этих материалов на один попавший в них быстрый нейтрон, рассчитанные для различных энергий нейтрона.

Таблица
Энергия нейтрона, МэВ Изотоп
В11 Са40
1 3.2Е-5 8.3Е-7
1,5 6.6Е-5 1.3Е-6
2,5 8.7Е-5 1.2Е-5
4 6.41Е-5 2.4Е-5
6 8.5Е-5 1.6Е-4
10 8.5Е-5 3.8Е-4
14,5 1.7Е-4 4.1Е-4

Из таблицы видно, что эффективность датчика с источником из В11 слабо зависит от энергии быстрого нейтрона в диапазоне энергий 1-14,5 МэВ. Эффективность датчика с источником из Са40 растет с увеличением энергии нейтрона и более чем на порядок превышает эффективность датчика с В11 при энергии нейтрона 14,5 МэВ. Из таблицы следует, что для нейтронов спектра деления более эффективным является датчик с источником заряженных частиц из В11.

В случае датчика тепловых нейтронов материалом источника являются гадолиний и его изотопы Gd155 и Gd157, обладающие среди всех существующих элементов максимальным макроскопическим сечением поглощения нейтронов. При использовании гадолиния плотность потока тепловых нейтронов резко падает по мере удаления от поверхности слоя источника вглубь слоя. По этой причине существует толщина слоя источника, при которой выход заряженных частиц максимален. В случае естественного гадолиния эта толщина составляет примерно 10-12 мкм. Доля электронов, выходящих из этого слоя гадолиния при изотропном распределении потока нейтронов, составляет около 10% от числа упавших на этот слой нейтронов. Вторым по количеству выходящих зарядов является кадмий и его изотоп Cd113.

Сечение взаимодействия с тепловыми нейтронами для бора В11 и Са40, приводящего к рождению заряженных частиц, пренебрежимо мало по сравнению с сечением взаимодействия с быстрыми нейтронами. Это обеспечивает низкую чувствительность датчика к фоновому излучению тепловых нейтронов. Чувствительность к фоновому гамма-излучению также крайне низка из-за малой вероятности ядерных реакций под действием гамма-излучения с рождением заряженных частиц.

Сечение взаимодействия гадолиния и его изотопов Gd155 и Gd157, a также кадмия и его изотопа Cd113 с быстрыми нейтронами и гамма излучением пренебрежимо мало по сравнению с сечением для тепловых нейтронов. Датчик с источником заряженных частиц из этих элементов является датчиком тепловых нейтронов практически нечувствительным к быстрым нейтронам и гамма излучению.

Влияние электромагнитных наводок уменьшено применением двух идентичных транзисторов, включенных в противоположные плечи мостовой схемы.

Поглотитель заряженных частиц 3 выполнен из материала с хорошей электропроводностью, обладающим минимальным коэффициентом отражения (альбедо) для падающих на него заряженных частиц. Одним из таких материалов является, например, графит.

Величина нейтронного потока измеряется величиной тока в диагонали мостовой схемы. Данная мостовая схема приведена лишь для примера и не является единственным вариантом исполнения схемы регистрации.

Заряд, появившийся на затворе полевого транзистора, приводит к появлению на нем напряжения U:

U=Q/C,

где: Q - заряд на затворе, С - входная емкость транзистора.

Напряжение, соответствующее уровню шумов полевого транзистора, составляет несколько микровольт. Для примера, примем это напряжение равным 3 мкВ, а входную емкость транзистора равной 1 пф. Расчет показывает, что напряжение в 3 мкВ возникает при появлении на затворе около 20 единичных зарядов. При площади 1 см2 источника 2 из Са40 такой величины заряд возникает при попадании на него примерно 5·104 быстрых нейтронов с энергией 14,5 МэВ. В случае такого же по площади источника из гадолиния при появлении на затворе 20 единичных зарядов потребуется всего 2·102 тепловых нейтронов.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 25.
10.01.2013
№216.012.19f6

Способ неразрушающего контроля изделий

Использование: для неразрушающего контроля изделий. Сущность: заключается в том, что сканируют объект пучком от точечного источника излучения при возвратно-поступательном перемещении объекта контроля, регистрируют интенсивность излучения, прошедшего через объект контроля, с помощью матрицы...
Тип: Изобретение
Номер охранного документа: 0002472138
Дата охранного документа: 10.01.2013
27.12.2013
№216.012.91ad

Способ нейтронной радиографии

Использование: для нейтронной радиографии. Сущность: заключается в том, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру...
Тип: Изобретение
Номер охранного документа: 0002502986
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9587

Экран-преобразователь излучений

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных...
Тип: Изобретение
Номер охранного документа: 0002503973
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9589

Нейтронный датчик

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников...
Тип: Изобретение
Номер охранного документа: 0002503975
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9891

Рентгеновский анализатор

Использование: для исследования объектов посредством рентгеновского излучения. Сущность: заключается в том, что рентгеновский анализатор выполнен из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и...
Тип: Изобретение
Номер охранного документа: 0002504756
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c9f

Устройство нейтронной радиографии

Использование: для исследования внутренней структуры объекта посредством нейтронной радиографии. Сущность заключается в том, что устройство нейтронной радиографии содержит источник проникающего излучения, систему перемещения объекта относительно источника излучения, блок формирования потока...
Тип: Изобретение
Номер охранного документа: 0002505801
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cc7

Способ измерения интенсивности излучения

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002505841
Дата охранного документа: 27.01.2014
01.03.2019
№219.016.cc0d

Рентгеновский анализатор

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к...
Тип: Изобретение
Номер охранного документа: 0002388015
Дата охранного документа: 27.04.2010
01.03.2019
№219.016.ce1b

Газовый детектор

Изобретение относится к мониторингу, радиационному контролю и может быть использовано в ядерной физике, атомной энергетике, в системах контроля и обеспечения безопасности энергетических ядерных реакторов. Технический результат - уменьшение ослабления излучения люминесцирующей газовой среды при...
Тип: Изобретение
Номер охранного документа: 0002421756
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.d85f

Мишенный блок нейтронного генератора

Изобретение относится к мишеням для ядерных реакций для получения интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. В нейтронном генераторе, в мишенной камере дополнительно на подложке расположена дейтериевая мишень с системой вращения и охлаждения....
Тип: Изобретение
Номер охранного документа: 0002393557
Дата охранного документа: 27.06.2010
Показаны записи 1-10 из 41.
10.01.2013
№216.012.19f6

Способ неразрушающего контроля изделий

Использование: для неразрушающего контроля изделий. Сущность: заключается в том, что сканируют объект пучком от точечного источника излучения при возвратно-поступательном перемещении объекта контроля, регистрируют интенсивность излучения, прошедшего через объект контроля, с помощью матрицы...
Тип: Изобретение
Номер охранного документа: 0002472138
Дата охранного документа: 10.01.2013
27.12.2013
№216.012.91ad

Способ нейтронной радиографии

Использование: для нейтронной радиографии. Сущность: заключается в том, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру...
Тип: Изобретение
Номер охранного документа: 0002502986
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9587

Экран-преобразователь излучений

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных...
Тип: Изобретение
Номер охранного документа: 0002503973
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9589

Нейтронный датчик

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников...
Тип: Изобретение
Номер охранного документа: 0002503975
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9891

Рентгеновский анализатор

Использование: для исследования объектов посредством рентгеновского излучения. Сущность: заключается в том, что рентгеновский анализатор выполнен из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и...
Тип: Изобретение
Номер охранного документа: 0002504756
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c9f

Устройство нейтронной радиографии

Использование: для исследования внутренней структуры объекта посредством нейтронной радиографии. Сущность заключается в том, что устройство нейтронной радиографии содержит источник проникающего излучения, систему перемещения объекта относительно источника излучения, блок формирования потока...
Тип: Изобретение
Номер охранного документа: 0002505801
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cc7

Способ измерения интенсивности излучения

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002505841
Дата охранного документа: 27.01.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc65

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для...
Тип: Изобретение
Номер охранного документа: 0002530459
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc66

Анализатор многофазной жидкости

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально...
Тип: Изобретение
Номер охранного документа: 0002530460
Дата охранного документа: 10.10.2014
+ добавить свой РИД