×
01.06.2019
219.017.7248

Результат интеллектуальной деятельности: Устройство для измерения нейтронной пористости

Вид РИД

Изобретение

Аннотация: Использование: для измерения нейтронной пористости пластов горных пород в скважинах. Сущность изобретения заключается в том, что устройство определения нейтронной пористости включает в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, при этом в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрых нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен к процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору. Технический результат: обеспечение возможности регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика. 3 ил.

Изобретение относится к области геофизических исследований параметров геологических пластов методом импульсного нейтрон-нейтронного каротажа и может быть использовано в скважинных устройствах, предназначенных для измерения нейтронной пористости пластов горных пород в скважинах.

Импульсный нейтрон-нейтронный каротаж применяют в обсаженных скважинах для литологического расчленения разрезов и выделения коллекторов, выявления водо- и нефтегазонасыщенных пластов, определения положений водонефтяного контакта, определения газожидкостных контактов, оценки пористости пород, количественной оценки начальной, текущей и остаточной нефтенасыщенности, контроля за процессом испытания и освоения скважин («Техническая инструкция по проведению геофизических исследований и работ с приборами на кабеле в нефтяных и газовых скважинах РД 153-39.0-072-01», Москва – 2002).

Известно «Устройство, снабженное нейтронным генератором, для измерения нейтронной пористости, обладающее высокой чувствительностью к пористости». Устройство включает в себя: источник быстрых нейтронов, ближний нейтронный детектор и дальний нейтронный детектор, расположенный на большем расстоянии от нейтронного источника, чем ближний нейтронный детектор, источник быстрых нейтронов выполнен в виде электронного генератора нейтронов, электронный генератор нейтронов является генератором 14 МэВ нейтронов, излучаемые в горную породу нейтроны имеют энергию выше энергии нейтронов, излучаемых AmBe источником, ближний нейтронный детектор является детектором тепловых нейтронов, детектор тепловых нейтронов содержит 3Не, активная область детектора тепловых нейтронов, ближайшего к электронному генератору нейтронов, располагается от него на расстояниях менее, примерно, 7 или 9, или 10 дюймов, активная область детектора тепловых нейтронов, дальнего по отношению к электронному генератору нейтронов располагается от него на расстоянии более 15 дюймов, между детектором тепловых нейтронов и электронным нейтронным генератором установлен экран. Заявка на патент США №2011/0297818 А1, G01V 5/10. 08.12.2011. Аналог.

Недостатком аналога является относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку поток тепловых нейтронов определяется общим содержанием воды, а не только водой, содержащейся в поровом пространстве. Относительно низкая точность измерения влажности может быть обусловлена также наличием в породе примесей, заметно поглощающих тепловые нейтроны.

Известно «Скважинное устройство для определения нейтронной пористости, характеризующееся повышенной точностью и уменьшением литологических эффектов». Устройство включает в себя: импульсный генератор 14 МэВ нейтронов, нейтронный монитор, первый и второй нейтронные детекторы и схему обработки данных. Причем, первый нейтронный детектор, или второй нейтронный детектор, или оба нейтронных детектора расположены от импульсного генератора на расстоянии, обеспечивающем минимальное влияние литологии. Заявка на патент США №2011/0260044 А1, G01V 5/10. 27.10.2011. Аналог.

Недостатком аналога является относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку поток тепловых нейтронов определяется общим содержанием воды, а не только водой, содержащейся в поровом пространстве. Относительно низкая точность измерения влажности может быть обусловлена также наличием в породе примесей, заметно поглощающих тепловые нейтроны.

Известны «Скважинные устройства для определения сечения поглощения и пористости, снабженные нейтронными мониторами». Устройства включают в себя: импульсный источник нейтронов, нейтронный монитор, расположенный рядом с источником нейтронов, гамма-детектор, расположенный от источника нейтронов на расстоянии, примерно, 8-40 дюймов, защитный экран между гамма-детектором и нейтронным источником, детектор эпитепловых нейтронов, расположенный между источником нейтронов и гамма-детектором на расстоянии от 9 до 14 дюймов от нейтронного источника, детектор тепловых нейтронов, расположенный рядом с детектором эпитепловых нейтронов, дополнительно один и более детекторов эпитепловых и тепловых нейтронов, расположенных от нейтронного источника на большем расстоянии, чем расстояние между гамма- детектором и нейтронным источником, причем расстояние между дополнительными детекторами эпитепловых и тепловых нейтронов и нейтронным источником составляет 24 или более дюймов. Патент США № 7365307 В2, G01V 5/10. 29.04.2008. Прототип.

Недостатком прототипа является невозможность регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика.

Прототип содержит, как минимум, три нейтронных детектора: нейтронный монитор, детектор эпитепловых нейтронов и детектор тепловых нейтронов, которые расположены на разных расстояниях от импульсного источника нейтронов. Это приводит к увеличению длины скважинного прибора и ухудшению условий беспрепятственной проводки скважинного прибора по скважине.

Техническим результатом изобретения является обеспечение регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика. Следствием чего является уменьшение количества нейтронных детекторов в скважинном приборе и длины скважинного прибора, улучшающих условия беспрепятственной проводки скважинного прибора по скважине.

Это достигается за счет использования вместо нескольких нейтронных детекторов: нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов одного детектора тепловых нейтронов, расположенного на одном расстоянии от нейтронного источника, и регистрации им отдельно быстрых, эпитепловых и тепловых нейтронов за счет измерения временной зависимости сигнала, возникающего на выходе пропорционального счетчика во время и между нейтронными импульсами, с помощью усилителя-интегратора.

Технический результат достигается тем, что устройство определения нейтронной пористости, включающее в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрым нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору.

Сущность изобретения поясняется на Фиг. 1 - 3.

На Фиг. 1 схематично показаны состав и взаимное расположение основных элементов одной из возможных конструкций скважинного прибора, где:

1 – цилиндрический охранный корпус,

2 – импульсный источник быстрых нейтронов,

3 – детектор тепловых нейтронов,

4 – усилитель-интегратор,

5 – процессор,

6 – блок управления,

7 – система телеметрии.

На Фиг. 2 показана зависимость от времени удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика и составляющие удельного энерговыделения, рассчитанные для кальцита с нейтронной пористостью (влажностью) 14,9% при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:

8 – зависимость удельного энерговыделения в детекторе 3,

9 - зависимость удельного энерговыделения в детекторе 3, вызываемого быстрыми нейтронами с энергией 14 МэВ - 40 кэВ,

10 - зависимость удельного энерговыделения в детекторе 3, вызываемого эпитепловыми нейтронами с энергией 40 кэВ – 0,414 эВ,

11 - зависимость удельного энерговыделения в детекторе 3, вызываемого тепловыми нейтронами с энергией менее 0,414 эВ.

На Фиг. 3 показаны рассчитанные зависимости удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика при различной нейтронной пористости кальцита при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:

12 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 0,8%,

13 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 14,9%,

14 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 36,4%,

15 - зависимость удельного энерговыделения в детекторе 3 для пресной воды.

Скважинное устройство согласно заявляемому техническому решению содержит цилиндрический охранный корпус 1, импульсный источник 2 быстрых нейтронов, детектор 3 тепловых нейтронов, усилитель-интегратор 4, процессор 5, блок управления 6 и систему телеметрии 7.

Цилиндрический охранный корпус 1 служит в качестве прочного корпуса устройства и выполняется из стали толщиной около нескольких миллиметров.

Импульсный источник 2 быстрых нейтронов может быть выполнен в виде генератора нейтронов с энергией 2,5 МэВ или 14 МэВ, расположен соосно с охранным корпусом 1 и служит для облучения горной породы импульсами быстрых нейтронов. Импульсный источник 2 подключен электрически к блоку управления 6.

Детектор 3 тепловых нейтронов служит для регистрации нейтронов, поступающих от импульсного источника 2 и из окружающей среды. В качестве детектора 3 тепловых нейтронов может использоваться пропорциональный счетчик, заполненный 3Не, длина которого обычно составляет от 8 см до 15 см, а диаметр около 30 мм. Детектор 3 может быть выполнен в виде кассеты, содержащей несколько пропорциональных счетчиков. Детектор 3 тепловых нейтронов обычно располагают по отношению к импульсному источнику 2 на расстоянии L<15 см и соосно с охранным корпусом 1.

Блок управления 6 электрически подключен к импульсному источнику 2 и процессору 5 и служит для управления работой импульсного источника 2.

Детектор 3 тепловых нейтронов подключен электрически ко входу усилителя-интегратора 4, который служит для интегрирования, усиления и оцифровки заряда, образуемого в детекторе 3 тепловых нейтронов в результате взаимодействия с ними нейтронов различной энергии.

К усилителю-интегратору 4 подключен также процессор 5. Процессор 5 служит для программирования режимов работы усилителя-интегратора 4, блока управления 6 и передачи оцифрованных данных в системе телеметрии 7.

Система телеметрии 7 служит для передачи данных в наземную аппаратуру (на Фиг. 1 не показана).

Сигнал, снимаемый с выхода детектора 3, пропорционален удельному энерговыделению в детекторе 3 (зависимость 8 на Фиг. 2).

При облучении вещества импульсным источником 2 быстрых нейтронов в веществе в различные моменты времени с начала импульса присутствуют быстрые нейтроны различной энергии, эпитепловые и тепловые нейтроны. Соотношение их потоков зависит от времени и нейтронной пористости горной породы.

Величина энерговыделения (заряда), возникающего в детекторе 3 под действием быстрых нейтронов, определяется их потоком и средней энергией, передаваемой 3Не за счет упругого рассеяния быстрых нейтронов.

Величина энерговыделения (заряда), возникающего в детекторе 3 под действием эпитепловых и тепловых нейтронов, прямо пропорциональна потоку на него этих нейтронов, поскольку при их захвате ядром 3Не выделяется одна и та же энергия, равная 0,76 Мэв/нейтрон.

Во время импульса источника 2 и некоторое время после него на детектор поступают в основном быстрые нейтроны как непосредственно от источника, так и со стороны окружающего вещества (зависимость 9 на Фиг. 2 для нейтронов с энергией 14 МэВ – 40 кэВ). Из-за замедления быстрых нейтронов в веществе средняя энергия этих нейтронов постоянно уменьшается. Время замедления быстрых нейтронов сильно зависит от нейтронной пористости горной породы и уменьшается с ее увеличением.

Из зависимости 9 видно, что сигнал, возникающий в детекторе 3 тепловых нейтронов при t≈ 0,1 мкс от начала нейтронного импульса, может быть использован для мониторирования выхода импульсного источника 2.

Через несколько микросекунд после начала нейтронного импульса на детектор начинают поступать эпитепловые нейтроны (зависимость 10 на Фиг. 2 для нейтронов с энергией 40 кэВ – 0,414 эВ). В случае короткого ~1 мкс нейтронного импульса максимальная плотность их потока на детектор достигается примерно через t≈2-3 мкс и затем быстро спадает с постоянной спада не более нескольких десятков микросекунд. Таким образом, сигнал, возникающий в детекторе 3 тепловых нейтронов при t≈2-3 мкс, в основном вызван эпитепловыми нейтронами.

Тепловые нейтроны начинают поступать на детектор через несколько десятков микросекунд после начала нейтронного импульса (зависимость 11 на Фиг. 2 для нейтронов с энергией <0,414 эВ). В случае нейтронного импульса длительностью около 1 мкс удельное энерговыделение достигает максимума к моменту времени t~10-20 мкс. Сигнал, возникающий в детекторе 3 тепловых нейтронов t>≈20 мкс, в основном вызван тепловыми нейтронами.

Постоянная спада потока тепловых нейтронов на детектор зависит от нейтронной пористости горной породы и практически не превышает 1 мс. Поэтому при частоте повторения импульсов менее 100 Гц к моменту прихода следующего импульса тепловые нейтроны в горной породе вымирают и с приходом следующего импульса процесс полностью повторяется.

В настоящее время для измерения нейтронной пористости горной породы в скважине используются эпитепловые и тепловые нейтроны. Для их регистрации применяются пропорциональные 3Не или 10В счетчики.

Время сбора заряда, образованного в пропорциональном счетчике в результате захвата нейтрона составляет около 1-4 мкс [D. Mazed, S. Mameri, R. Ciolini. Design parameters and technology optimization of 3He-filled proportional counter for thermal neutron detection and spectrometry applications. Radiation Measurements 47 (2012) 577-587]. Соответствующее «мертвое» время для пропорциональных счетчиков составляет <10 мкс [G.P. Manessi. Development of advanced radiation monitors for pulsed neutron fields. PhD thises. (2015) 1-147, p.16]. Указанное мертвое время неизбежно приводит к просчету нейтронов при частоте регистрируемых событий более (5-10) кГц. Такая частота может иметь место при регистрации нейтронов во время сравнительно короткого и мощного нейтронного импульса и некоторое время после него.

«Временной спектр скоростей счета для отечественной низкочастотной аппаратуры сильно искажен просчетами, причем применяемая методика коррекции ограничивается просчетами до 2-кратных, что явно недостаточно. Основным интерпретационным параметром является измеряемый временной декремент спада нейтронов или фотонов, который зависит не только от свойств пласта, но и от условий измерения - конструкции и заполнения скважины, величины зонда. Полученное значение декремента к тому же обычно не обеспечивается оценкой его точности» (С.Г. Бородин. «Глубокая обработка данных импульсного нейтронного каротажа нефтегазовых скважин», автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва – 2009).

Предлагаемое устройство для реализации импульсного нейтрон-нейтронного каротажа содержит усилитель-интегратор, обеспечивающий регистрацию нейтронов всего спектра (зависимость 8 на Фиг. 2), в том числе и при наложении регистрируемых событий, во всем временном интервале, как во время нейтронных импульсов, так и между ними.

Усилитель-интегратор обеспечивает измерение величины заряда, образуемого в нейтронном детекторе, падающими на него нейтронами, как в случае высокой частоты следования регистрируемых событий, так и в случае их частичного наложения. При этом заряд, собранный с выхода счетчика, пропорционален числу зарегистрированных нейтронов и выделяющейся при этом энергии [I. Rios, J. Gonzalez, and R.E. Mayer. Total fluence influence on the detected magnitude of neutron burst using proportional detectors. Radiation Measurement 53-54 (2013) 31-37; J. Moreno, L. Birstein, R.E. Mayer et al. System for measurement of low yield neutron pulses from D-D fusion reactions based upon a 3He proportional counter. Meas. Sci. Technol. 19 (2008) IOPScience 087002 (5pp)].

Устройство работает следующим образом.

Скважинный прибор размещают в скважине. Устанавливают с помощью процессора 5 режим работы блока управления 6 и усилителя-интегратора 4.

Включают импульсный источник 2 на генерацию импульсов быстрых нейтронов. Быстрые нейтроны выходят из импульсного источника 2 и в общем случае попадают в промывочную (скважинную) жидкость, обсадную колонну, а затем в горную породу вокруг скважины, в которых быстрые нейтроны взаимодействуют с ядрами, входящих в их состав химических элементов, вследствие чего в основном теряют энергию, становятся с течением времени эпитепловыми, а затем и тепловыми. Количество образовавшихся эпитепловых и тепловых нейтронов зависит от нейтронной пористости горной породы и времени после нейтронного импульса. Количество тепловых нейтронов и время их жизни зависит также от наличия химических элементов, поглощающих нейтроны.

Быстрые нейтроны импульсного источника 2, а также быстрые нейтроны источника, рассеявшиеся в окружающей среде во время нейтронного импульса, эпитепловые и тепловые нейтроны частично попадают в детектор 3 тепловых нейтронов. Заряд, возникающий под действием нейтронов в детекторе 3 тепловых нейтронов, поступает в усилитель-интегратор 4, в котором он усиливается и далее оцифровывается. Временная зависимость сигнала на выходе усилителя-интегратора 4 определяются количеством взаимодействий тех или иных нейтронов с веществом внутри детектора 3 тепловых нейтронов в соответствующие моменты времени и выделяющейся при этом энергией.

Сигналы, поступающие с выхода усилителя-интегратора 4 во время и между нейтронными импульсами передаются с помощью процессора 5 и системы телеметрии 7 в наземную аппаратуру (на Фиг. 1 не показана), где сохраняются в памяти персонального компьютера (ПК). Процесс повторяется для N≥1 нейтронных импульсов, при этом каждую последующую зависимость сигнала от времени для детектора 3 тепловых нейтронов суммируют с предыдущей. Число нейтронных импульсов N определяется заданной точностью измерений.

В наземной аппаратуре полученную временную зависимость сравнивают с набором зависимостей из базы данных, рассчитанных заранее для горной породы различной нейтронной пористости, при различных параметрах скважины и обсадной колонны, а также промывочной жидкости и аттестованных путем измерений указанных зависимостей данным способом на геофизических моделях горных пород.

Из базы данных выбирают расчетную зависимость наиболее близкую, в соответствии с применяемыми критериями оценки, к зависимости, зарегистрированной детектором 3 тепловых нейтронов. Нейтронную пористость горной породы, а также параметры скважины принимают совпадающими с нейтронной пористостостью и параметрами, использованными при получении расчетной зависимости.

Таким образом, заявленный технический результат: обеспечение регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика осуществляется за счет использования импульсного источника 2 быстрых нейтронов, размещенного в цилиндрическом охранном корпусе 1 и подключенного к блоку управления 6, который подключен также к процессору 5, применения вместо нескольких нейтронных детекторов: нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов одного детектора 3 тепловых нейтронов, подключенного последовательно к усилителю-интегратору 4, процессору 5 и системе телеметрии 7.

Устройство определения нейтронной пористости, включающее в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, отличающееся тем, что в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрых нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен к процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору.
Устройство для измерения нейтронной пористости
Устройство для измерения нейтронной пористости
Устройство для измерения нейтронной пористости
Устройство для измерения нейтронной пористости
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
29.03.2019
№219.016.ecfa

Способ и стенд для моделирования двухосевой ударной нагрузки на объект испытаний

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок в двух направлениях одновременно. Техническим результатом является обеспечение двухосевого режима нагружения объекта с заданным уровнем параметров...
Тип: Изобретение
Номер охранного документа: 0002682979
Дата охранного документа: 25.03.2019
20.04.2019
№219.017.3519

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности непрерывным...
Тип: Изобретение
Номер охранного документа: 0002685427
Дата охранного документа: 18.04.2019
25.04.2019
№219.017.3b0e

Способ импульсного нейтрон-нейтронного каротажа

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном...
Тип: Изобретение
Номер охранного документа: 0002685762
Дата охранного документа: 23.04.2019
20.05.2019
№219.017.5d15

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по...
Тип: Изобретение
Номер охранного документа: 0002688036
Дата охранного документа: 17.05.2019
19.06.2019
№219.017.83c4

Способ увеличения динамического диапазона чувствительности многоканального измерителя скорости на базе гетеродин-интерферометров

Использование: для увеличения динамического диапазона чувствительности многоканального измерителя скорости. Сущность изобретения заключается в том, что мощность подаваемого на схему регистрации света в разных измерительных каналах регулируют электрооптическими элементами, данное изменение...
Тип: Изобретение
Номер охранного документа: 0002691669
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8d36

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002692004
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
26.06.2019
№219.017.9218

Способ обнаружения пуассоновского сигнала в пуассоновском шуме

Изобретение относится к области обнаружения источников ионизирующих излучений и может быть использовано для радиационного контроля делящихся материалов при их несанкционированном перемещении. Сущность изобретения заключается в том, что способ обнаружения пуассоновского сигнала в пуассоновском...
Тип: Изобретение
Номер охранного документа: 0002692410
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a5c5

Сверхширокополосный преобразователь напряжённости магнитного поля

Изобретение относится к радиоприёмной технике и может быть использовано в области радиоизмерений, радиопеленгации, радионавигации в диапазонах частот КНЧ – УВЧ (ЕLF – UНF). Преобразователь содержит прямолинейный ферритовый сердечник с обмоткой, соосные с окружающим их экранированным...
Тип: Изобретение
Номер охранного документа: 0002693517
Дата охранного документа: 03.07.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
Показаны записи 1-10 из 55.
10.01.2013
№216.012.19f6

Способ неразрушающего контроля изделий

Использование: для неразрушающего контроля изделий. Сущность: заключается в том, что сканируют объект пучком от точечного источника излучения при возвратно-поступательном перемещении объекта контроля, регистрируют интенсивность излучения, прошедшего через объект контроля, с помощью матрицы...
Тип: Изобретение
Номер охранного документа: 0002472138
Дата охранного документа: 10.01.2013
27.12.2013
№216.012.91ad

Способ нейтронной радиографии

Использование: для нейтронной радиографии. Сущность: заключается в том, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру...
Тип: Изобретение
Номер охранного документа: 0002502986
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9587

Экран-преобразователь излучений

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных...
Тип: Изобретение
Номер охранного документа: 0002503973
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9589

Нейтронный датчик

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников...
Тип: Изобретение
Номер охранного документа: 0002503975
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9891

Рентгеновский анализатор

Использование: для исследования объектов посредством рентгеновского излучения. Сущность: заключается в том, что рентгеновский анализатор выполнен из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и...
Тип: Изобретение
Номер охранного документа: 0002504756
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98f2

Скважинный генератор нейтронов

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке...
Тип: Изобретение
Номер охранного документа: 0002504853
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c9f

Устройство нейтронной радиографии

Использование: для исследования внутренней структуры объекта посредством нейтронной радиографии. Сущность заключается в том, что устройство нейтронной радиографии содержит источник проникающего излучения, систему перемещения объекта относительно источника излучения, блок формирования потока...
Тип: Изобретение
Номер охранного документа: 0002505801
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cc7

Способ измерения интенсивности излучения

Изобретение относится к метрологии излучений, а именно к способу измерения интенсивности радиационного излучения, и может быть использовано в мониторных и радиографических сцинтилляционных детекторах рентгеновского и гамма-излучений, а также быстрых нейтронов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002505841
Дата охранного документа: 27.01.2014
20.08.2014
№216.012.ec14

Аппарат для дистанционной нейтронной терапии

Изобретение относится к медицинской технике. Аппарат для дистанционной нейтронной терапии предназначен для лечения радиорезистентных форм онкологических заболеваний. В его конструкцию входят основание, обеспечивающее вращение на ±180° сбалансированной консоли с нейтронной головкой. Нейтронная...
Тип: Изобретение
Номер охранного документа: 0002526244
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
+ добавить свой РИД