×
20.08.2014
216.012.ed21

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ДВУХСТЕПЕННОГО ПОПЛАВКОВОГО ГИРОСКОПА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Заявлен способ определения погрешности двухстепенного поплавкового гироскопа, включающий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа. Нагрев гироскопа осуществляют до температуры, определяемой по минимальному значению разности токов, измеряемых в цепи датчика момента обратной связи в двух положениях статического равновесия гирокамеры, которые она соответственно занимает после отклонения вокруг оси подвеса в одну и другую стороны на углы 2÷10 угл. мин, при фиксированных значениях температуры гироскопа, изменяемой в диапазоне Ti=(T+idT)°C, где Т - расчетное значение температуры, dT=1°С - дискретность изменения температуры, -3≤i≤3. Технический результат - повышение точности определения погрешности двухстепенного поплавкового гироскопа. 3 ил.
Основные результаты: Способ определения погрешности двухстепенного поплавкового гироскопа, содержащий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа, отличающийся тем, что нагрев гироскопа осуществляют до температуры, определяемой по минимальному значению разности токов, измеряемых в цепи датчика момента обратной связи в двух положениях статического равновесия гирокамеры, которые она занимает после отклонения вокруг оси подвеса в одну и другую стороны на углы 2÷10 угл. мин, при фиксированных значениях температуры гироскопа, изменяемой в диапазоне Ti=(Tp+idT)°C, где Тр - расчетное значение температуры, dT=1°С - дискретность изменения температуры, -3≤i≤3.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов.

Известен способ определения погрешности двухстепенного поплавкового гироскопа [У.Ригли, У.Холлистер, У.Денхард. Теория, проектирование и испытания гироскопов // М.: Мир, 1972 г., С.358-367], заключающийся в выполнении следующих технологических операций:

1. Установка гироскопа на платформе одноосного гиростабилизатора.

2. Включение гироскопа в качестве чувствительного элемента гиростабилизатора.

3. Включение системы регулирования температуры гироскопа.

4. Нагрев гироскопа до заданного значения температуры.

5. Определение скорости ухода гироскопа путем измерения времени разворота платформы гиростабилизатора на заданный эталонный угол.

6. Определение погрешности гироскопа

δω=(Ωизмэ),

где:

Ωизм - измеренная скорость ухода,

Ωэ - значение эталонной скорости вращения основания, например ΩэЗв,

ΩЗв- вертикальная составляющая скорости вращения Земли.

Недостатком способа является сложность используемого оборудования - одноосного гиростабилизатора.

Известен также способ определения погрешности двухстепенного поплавкового гироскопа [У.Ригли, У.Холлистер, У.Денхард, Теория, проектирование и испытания гироскопов» // М: Мир, 1972 г., С.367-371], который принимаем за прототип. Способ-прототип заключается в выполнении следующих технологических операций:

1. Установка гироскопа в заданное положение, например, при котором его продольная ось и ось вращения ротора гиромотора горизонтальны.

2. Включение гироскопа в режим обратной связи датчик угла - усилитель-преобразователь - датчик момента. При этом ток 1дм, протекающий в обмотке датчика момента после приведения камеры в «нулевое» положение, будет являться мерой момента, прикладываемого к гирокамере.

3. Включение системы регулирования температуры гироскопа. Настройки ее на температуру, определенную расчетным путем.

4. Нагрев гироскопа.

5. Измерение тока в цепи датчика момента обратной связи.

6. Определение погрешности δω гироскопа из соотношения:

δω=(Ωизмэ),

где:

Ωизмдм*Iдм измеренная скорость ухода гироскопа,

Кдм - коэффициент передачи гироскопа по току датчика момента,

Iдм - измеренное значение тока в цепи датчика момента.

В данном случае ΩэЗв.

Недостатком способа является малая точность. Указанный недостаток обусловлен тем, что в реальных гироскопах значение рабочей температуры отличается от ее расчетного значения. Отклонение обусловлено наличием технологических погрешностей:

- погрешности балансировки камеры в ванне по плавучести,

- отклонениями параметров (плотности) поддерживающей жидкости, заполняющей рабочий зазор гироскопа, от ее расчетного значения,

- погрешностями работы системы регулирования температуры прибора. Отклонение температуры прибора от ее расчетного значения приводит к тому, что появляется остаточный вес (плавучесть) поплавковой камеры. Под действием остаточного веса (плавучести) камера тонет (всплывает) в жидкости. Движение камеры в рабочем зазоре ограничивается камневыми опорами. При механическом контакте на опоры действует сила давления, пропорциональная остаточному весу (плавучести) гирокамеры. При развороте камеры вокруг оси подвеса наличие давления в опорах приводит к появлению момента трения. Появление момента трения приводит к снижению точности определения погрешности гироскопа.

Задачей настоящего изобретения является совершенствование технологического процесса производства гироскопов.

Достигаемый технический результат - повышение точности определения погрешности двухстепенного поплавкового гироскопа.

Поставленная задача решается тем, что в известном способе определения погрешности двухстепенного поплавкового гироскопа, содержащем установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа, нагрев гироскопа осуществляют до температуры, определяемой по минимальному значению разности токов, измеряемых в цепи датчика момента обратной связи в двух положениях статического равновесия гирокамеры, которые она, соответственно, занимает после отклонения вокруг оси подвеса в одну и другую стороны на углы 2-10 угл. мин, при фиксированных значениях температуры гироскопа, изменяемой в диапазоне Ti=(Tpac+idT)°C, где Трас - расчетное значение температуры, dT=1°С - дискретность изменения температуры, -3≤i≤3.

Предлагаемое изобретение поясняется фиг.1-3. На фиг.1 приведена принципиальная схема включения гироскопа при определении погрешности.

На фиг.2 приведен график изменения тока в цепи датчика момента во времени при и после отклонения камеры от «нулевого» положения.

На фиг.3 приведен график зависимости разности токов, измеренных в цепи датчика момента в двух положениях статического равновесия, от температуры прибора. На фигурах приняты следующие обозначения: На фиг.1:

1 - гироскоп.

2 - неподвижное основание.

3 - гиромотор.

4 - гирокамера.

5 - камневые опоры.

6 - поддерживающая жидкость.

7 - датчик угла.

8 - усилитель-преобразователь.

9 - датчик момента обратной связи.

10 - источник питания.

11-тумблер.

12 - милливольтметр.

ОХ - ось подвеса поплавковой гирокамеры 4.

OZ - ось вращения ротора гиромотора 3.

ОУ - измерительная ось гироскопа 1.

На фиг.2:

Iдм - ось тока в цепи датчика момента обратной связи.

а - участок, характеризующий изменение тока в цепи датчика 9 момента при отклонении камеры 4.

б - участок, характеризующий процесс изменения тока в цепи датчика 9 момента при возвращении камеры 4 из отклоненного положения в положение статического равновесия.

I, II - положения статического равновесия моментов.

На фиг.3:

ΔIдм - ось разности тока в цепи датчика 9 момента.

Т - ось температуры гироскопа 1.

Трас - расчетное значение температуры гироскопа 1.

Траб - рабочее значение температуры гироскопа 1.

Реализация предлагаемого способа осуществляется при выполнении следующей последовательности технологических операций:

1. Установка гироскопа 1 на неподвижном основании 2 в положение, при котором его продольная ось ОХ и ось OZ вращения ротора гиромотора 3 горизонтальны. Выбор данного положения обусловлен тем, что в этой ориентации, при наличии остаточного веса (плавучести) гирокамеры 4, давление возникает в двух камневых опорах 5 (при вертикальной ориентации продольной оси гироскопа - в одной). Достоверность измерения момента трения из-за его увеличения повышается.

2. Нагрев гироскопа 1 до нижней границе обозначенного диапазона -3≤i≤3 до температуры Т1=(Трас -3)°С, где Трас - расчетное значение температуры гироскопа 1 (температуре, при которой удельный вес камеры 4 равен удельному весу поддерживающей жидкости 6). При данной температуре удельный вес камеры 4 меньше удельного веса жидкости 6, камера 4 будет иметь остаточную плавучесть. Ее перемещение вверх по рабочему зазору ограничивается камневыми опорами 5. При появлении механического контакта в опорах 5 действует сила давления, пропорциональная остаточной плавучести. Выбор данной начальной температуры обусловлен тем, что время реализации способа при нагреве гироскопа значительно меньше времени реализации способа при его охлаждении при одинаковых условиях окружающей среды.

3. Включение гироскопа 1 в режим обратной связи датчик 7 угла - усилитель-преобразователь 8 - датчик 9 момента. При включении обратной связи сигнал рассогласования датчика 7 угла преобразуется в ток в обмотке датчика 9 момента. Значение тока после устранения рассогласования датчика 7 угла будет пропорционально моменту, прикладываемому к камере 4.

4. Отклонение поплавковой камеры 4, например, по часовой стрелке на 2-10 угл. мин путем кратковременного подключения источника 10 тумблером 11 ко второй обмотке датчика 9 момента. Контроль отклонения путем измерения выходного сигнала датчика 7 угла осуществляют с помощью милливольтметра 12. После отключения источника 10 от второй обмотки датчика 9 поплавковая камера 4 под действием момента со стороны датчика 9 момента обратной связи начнет движение в обратную сторону к «нулевому» положению. Ее движение прекратится в положении статического равновесия моментов:

Мр+Мг+Мтр=М1дм=Кдм*Iдм1,

где:

Ml дм - момент со стороны датчика 9 момента обратной связи.

Мр - момент разбалансировки камеры 4.

Мг - гироскопический момент.

Мтр - момент трения в камневых опорах 5.

Кдм - коэффициент передачи датчика 9 момента.

Iдм1 - ток в цепи датчика момента, измеренный в положении первого статического положения камеры 4.

5. Отклонение поплавковой камеры 4 против часовой стрелки на 2-10 угл. мин путем кратковременного подключения источника 10 (с противоположной полярностью) ко второй обмотке датчика 9 момента. Контроль отклонения путем измерения выходного сигнала датчика 7 угла осуществляют с помощью милливольтметра 12. После отключения источника 10 от второй обмотки датчика 9, поплавковая камера 4 под действием момента со стороны датчика 9 момента обратной связи начнет движение в обратную сторону к «нулевому» положению с другой стороны. Ее движение прекратится в положении второго статического равновесия моментов.

Мр+Мг-Мтр=М2дм=Кдм*Iдм2,

где:

М2дм - момент со стороны датчика 9 момента обратной связи.

Мр - момент разбалансировки камеры 4.

Мг - гироскопический момент.

Мтр - момент трения в камневой опоре 5.

Кдм - коэффициент передачи датчика 9 момента,

Iдм2 - ток в цепи датчика 9 момента, измеренный в положении второго статического положения гирокамеры 4.

Процесс изменения тока в цепи датчика момента обратной связи показан на фиг.2.

6. Определение разности тока ΔIдм1, пропорциональной моменту трения:

ΔIдм1=(Iдм2 - Iдм1)=2ΔМтр1/Кдм,

7. Повторение операций по пунктам 4-6, при последовательной установке температуры гироскопа 1 равной Ti=(Tpac+idT)°C, где Трас - расчетное значение температуры, dT=1°С - дискретность изменения температуры, -2≤i≤3, и построении по полученным результатам графика ΔIдмi=F(Ti). Пример графика зависимости приведен на фиг.3.

8. Определение из графика (фиг.3) температуры гироскопа 1, при которой значение ΔI минимально, соответствующее температуре соответствующей «нулевой» плавучести поплавковой камеры и нагрев гироскопа 1 до температуры Траб, определенной операцией по пункту 8. При этой температуре давление в камневых опорах 5 и, соответственно, момент трения в идеальном случае будут отсутствовать. Измерение тока в цепи датчика 9 момента.

9. Определение погрешности гироскопа 1 из соотношения:

δω=(Ωизмэ),

где:

Ωизмдм*Iдм - измеренная скорость ухода гироскопа,

Кдм - коэффициент передачи гироскопа по току датчика момента,

Iдм - измеренное значение тока в цепи датчика момента.

В данном случае ΔэЗв.

При этом за счет исключения (уменьшения) из результатов измерения составляющей погрешности от момента трения в камневых опорах, точность определения погрешности гироскопа 1 повышается.

Выбор диапазона отклонения камеры 4 обусловлен тем, что, как показывают проведенные на партии гироскопов экспериментальные исследования:

- при отклонении камеры в одну или другую стороны в пределах 2÷10 угл. мин камера выходит за пределы зоны, в которой момент трения в камневых опорах не является превалирующим, при всех задаваемых значениях температуры Ti, что позволяет камере после отклонения возвращаться под действием момента со стороны датчика момента обратной связи к положению статического равновесия. Способ реализуется.

- при отклонении менее 2 угл. мин имеется вероятность, что поплавковая камера после отклонения останется в зоне, где превалирует момент трения. Движение камеры в этом случае не происходит. Способ не реализуется. Так как определить границу статического равновесия моментов в этом случае не удается.

- при отклонении камеры более чем на 10 угл. мин. увеличивается время возвращения камеры к положению статического равновесия, время реализации предлагаемого способа. Так как задачей настоящего изобретения является совершенствование технологического процесса производства гироскопов, критерием которого является также малое (относительно) время выполнения технологических процессов, то увеличение времени является отрицательным.

Выбор диапазона изменения температуры прибора от (Трас=-3)°С до (Трас=+3)°С определяется максимально возможным уровнем технологических погрешностей предварительной балансировки поплавковой камеры в ванне по плавучести. Увеличение диапазона ведет к повышению трудоемкости процесса, уменьшение может привести к тому, что определяемая температура может оказаться за его пределами.

При реализации предлагаемого способа, точность определения погрешности двухстепенного поплавкового гироскопа, по сравнению со способом, принятым за прототип, повышается. Повышение точности достигается за счет исключения из результатов измерений составляющей погрешности от момента трения в камневых опорах. Исключение происходит путем определения и нагрева гироскопа до температуры, при которой давление в камневых опорах отсутствует (минимально), отсутствует остаточный вес (плавучесть) поплавковой камеры. Таким образом, поставленная задача решена.

На предприятии предлагаемый способ проверен. Получены положительные результаты. В настоящее время разрабатывается техническая документация для использования предлагаемого технического решения при производстве поплавковых двухстепенных гироскопов.

Способ определения погрешности двухстепенного поплавкового гироскопа, содержащий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа, отличающийся тем, что нагрев гироскопа осуществляют до температуры, определяемой по минимальному значению разности токов, измеряемых в цепи датчика момента обратной связи в двух положениях статического равновесия гирокамеры, которые она занимает после отклонения вокруг оси подвеса в одну и другую стороны на углы 2÷10 угл. мин, при фиксированных значениях температуры гироскопа, изменяемой в диапазоне Ti=(Tp+idT)°C, где Тр - расчетное значение температуры, dT=1°С - дискретность изменения температуры, -3≤i≤3.
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ДВУХСТЕПЕННОГО ПОПЛАВКОВОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ДВУХСТЕПЕННОГО ПОПЛАВКОВОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ДВУХСТЕПЕННОГО ПОПЛАВКОВОГО ГИРОСКОПА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 58.
10.04.2019
№219.017.08b2

Шлейфовая антенна

Шлейфовая антенна включает в себя возбуждаемый генератором первый вертикальный провод, заземленный в основании второй вертикальный провод, горизонтальный провод, соединенный с вершинами вертикальных проводов и имеющий разрыв, разделяющий горизонтальный провод на две неравные части так, что...
Тип: Изобретение
Номер охранного документа: 0002437191
Дата охранного документа: 20.12.2011
29.04.2019
№219.017.4215

Устройство измерения силы тяжести

Изобретение относится к приборостроению и может быть использовано для измерения силы тяжести. Согласно изобретению устройство содержит двойную кварцевую упругую систему крутильного типа с горизонтальными маятниками и укрепленными на них зеркалами, которая помещена в корпус, наполненный...
Тип: Изобретение
Номер охранного документа: 0002377611
Дата охранного документа: 27.12.2009
29.04.2019
№219.017.467c

Интегрированная инерциально-спутниковая система ориентации и навигации

Изобретение относится к области навигационного приборостроения подвижных объектов различного назначения. Технический результат - повышение точности и помехоустойчивости. Для достижения данного результата интегрированная система ориентации и навигации (ИСОН) содержит бескарданный инерциальный...
Тип: Изобретение
Номер охранного документа: 0002462690
Дата охранного документа: 27.09.2012
09.05.2019
№219.017.4d35

Интегрированная инерциально-спутниковая система ориентации и навигации для объектов, движущихся по баллистической траектории с вращением вокруг продольной оси

Изобретение относится к области навигационного приборостроения. Техническим результатом изобретения является повышение точности и помехоустойчивости интегрированных систем ориентации и навигации (ИСОН), содержащей инерциальные измерительные модули (БИИМ) на «грубых» микромеханических гироскопах...
Тип: Изобретение
Номер охранного документа: 0002375680
Дата охранного документа: 10.12.2009
09.05.2019
№219.017.4f8e

Гравитационный вариометр

Изобретение относится к области гравитационной градиентометрии и может быть использовано для геофизических исследований, в частности для оперативного прогноза землетрясений. Гравитационный вариометр согласно изобретению содержит крутильную систему с рабочим телом в виде гантельного коромысла....
Тип: Изобретение
Номер охранного документа: 0002438151
Дата охранного документа: 27.12.2011
20.05.2019
№219.017.5d53

Способ выставки изолированного гермоввода электростатического гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении электростатических гироскопов. Выставка изолированного упругого гермоввода вакуумной камеры электростатического гироскопа, служащего для снятия с ротора гироскопа наведенных до его...
Тип: Изобретение
Номер охранного документа: 0002381455
Дата охранного документа: 10.02.2010
20.05.2019
№219.017.5d54

Способ коррекции программного движения полярного электростатического гироскопа корабельной навигационной системы

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации инерциальных систем на электростатических гироскопах. Сущность изобретения заключается в определении во время калибровки полярного электростатического гироскопа (ЭСГ)...
Тип: Изобретение
Номер охранного документа: 0002386106
Дата охранного документа: 10.04.2010
20.05.2019
№219.017.5d55

Способ автокомпенсации уходов электростатического гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации инерциальных систем на электростатических гироскопах. Технический результат - повышение точности. Для достижения данного результата осуществляют развороты корпуса гироскопа...
Тип: Изобретение
Номер охранного документа: 0002386109
Дата охранного документа: 10.04.2010
04.06.2019
№219.017.73bb

Способ термостабилизации гироплатформы в проточном термостате

Изобретение относится к области приборостроения и может быть использовано в гироскопическом приборостроении. Технический результат - повышение точности термостабилизации гироплатформ и гироскопов. Для достижения данного результата осуществляют сдвиг уровня стабилизации температуры воздуха,...
Тип: Изобретение
Номер охранного документа: 0002381454
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7b4e

Рамочная антенна

Устройство предназначено для использования на подводных технических средствах, в частности на обитаемых подводных аппаратах. Техническим результатом является повышение взаимной поляризационной развязки рамочной системы между горизонтальной рамкой и вертикальными рамками (не менее 25 дБ), что...
Тип: Изобретение
Номер охранного документа: 0002372696
Дата охранного документа: 10.11.2009
Показаны записи 41-50 из 53.
05.07.2018
№218.016.6bd9

Способ термостабилизации чувствительного элемента инерциальной системы

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве прецизионных чувствительных элементов для инерциальных систем (прецизионных акселерометров, интегрирующих, дифференцирующих гироскопов и т.д.). Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002659326
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee5

Способ изготовления ротора шарового гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при изготовлении роторов шаровых гироскопов, в частности криогенного гироскопа. Согласно изобретению формообразование заготовки ротора осуществляют посредством изготовления сферы диаметром, большим, чем конечный...
Тип: Изобретение
Номер охранного документа: 0002660756
Дата охранного документа: 09.07.2018
26.10.2018
№218.016.962c

Устройство для измерения выходного сигнала пьезоэлектрического датчика

Изобретение относится к области измерительной техники, а именно к устройствам с пьезоэлектрическим датчиком, которые преобразуют величину переменных сил давления в электрический сигнал. Устройство для измерения выходного сигнала пьезоэлектрического датчика содержит первый пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002670712
Дата охранного документа: 24.10.2018
16.01.2019
№219.016.b045

Способ калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условиях орбитального полета

Изобретение относится к гироскопической технике, а именно к способам калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условия полета космического аппарата. Способ калибровки погрешностей бескарданной инерциальной системы на электростатических...
Тип: Изобретение
Номер охранного документа: 0002677099
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b072

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры. Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа дополнительно...
Тип: Изобретение
Номер охранного документа: 0002677091
Дата охранного документа: 15.01.2019
07.02.2019
№219.016.b7e1

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ)....
Тип: Изобретение
Номер охранного документа: 0002678959
Дата охранного документа: 04.02.2019
21.02.2019
№219.016.c574

Способ изготовления сферического ротора криогенного гироскопа

Использование: для изготовления роторов сверхпроводящих криогенных гироскопов. Сущность изобретения заключается в том, что способ изготовления сферического ротора криогенного гироскопа включает формирование сферической подложки, нанесение на подложку сверхпроводящего ниобиевого покрытия...
Тип: Изобретение
Номер охранного документа: 0002680261
Дата охранного документа: 19.02.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
+ добавить свой РИД