×
20.08.2014
216.012.ec68

Результат интеллектуальной деятельности: АМПУЛЬНОЕ УСТРОЙСТВО ДЛЯ РЕАКТОРНЫХ ИССЛЕДОВАНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула с исследуемыми образцами, помещенными в негерметичную тонкостенную оболочку из тугоплавкого материала. Капсула соединена с газовыми магистралями, обеспечивающими возможность проточной вентиляции рабочей полости капсулы. На выходе каждой магистрали установлены заглушки для временной герметизации капсулы, выполненные в виде втулок с осевыми отверстиями, заполненными легкоплавким материалом. В одной из магистралей расположены термометрические датчики, при этом чувствительный элемент каждого датчика введен в рабочую полость капсулы. Технический результат - возможность измерять температуру исследуемых образцов в ходе эксперимента, проводить анализ ГПД, выделяющихся при ядерном распаде в процессе проведения эксперимента, простые с конструктивной и технологической точки зрения механизмы временной герметизации рабочей полости капсулы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов).

Известно экспериментальное ампульное устройство, предназначенное для использования в реакторной технике при проведении внутриреакторных испытаний конструкционных и делящихся материалов и изделий из них [Гудков Л.В., Корольков А.В. Экспериментальное ампульное устройство, патент РФ на изобретение №2027233, МПК6 G12C 17/06, опубл. 20.01.1995]. Известное экспериментальное ампульное устройство состоит из герметичного корпуса, внутри которого расположена капсула с образцами. Зазор между капсулой и корпусом заполнен легкоплавким металлическим сплавом. В верхней части корпуса расположена полость с газом, а внутренний объем корпуса соединен с отвакуумированной емкостью. Между внутренним объемом и вакуумированной полостью установлена разрушаемая пробка.

В верхней части корпуса расположена полость с парами воды, которая предназначена для моделирования аварийной ситуации на ядерном реакторе при внезапной потере теплоносителя в активной зоне.

При достижении необходимого выгорания в образцах по сигналу оператора разрушается пробка и металлический расплав вытекает в отвакуумированную емкость. Зазор между корпусом и капсулой заполняется газом. При этом радиальное термическое сопротивление устройства увеличивается на 2-3 порядка.

Вследствие этого возможно заполнение зазора между капсулой и корпусом водой, что характерно для аварийной ситуации.

Известно также устройство для облучения материалов в ядерном реакторе [см. Середкин СВ. Авторское свидетельство СССР №1422883, МПК7 G12C 17/06, опубл. 20.11.2002].

Устройство содержит наружный корпус и ампулу с образцами, отделенную от наружного корпуса газовым зазором. Устройство для облучения материалов в ядерном реакторе предназначено для увеличения производительности эксперимента при сохранении автоматического регулирования температуры образцов. Для решения поставленной цели цилиндрический наружный корпус соединен с ампулой посредством кольцевых гофр, выполненных из биметалла, а наружный корпус имеет продольные гофры. Недостатком данного устройства является то, что в наружном корпусе может быть расположена только одна ампула, что не позволяет в одном эксперименте облучать несколько различных материалов твэлов в одинаковых условиях.

Наиболее близким к заявляемому техническому решению по решаемой задаче и техническому результату является ампульное устройство для реакторных исследований; приведенное в работе B.C.Синявского «Методы и средства экспериментальных исследований и реакторных испытаний термоэмиссионных электрогенерирующих сборок. М.: Энергоатомиздат, 2000, с.112. Данное техническое решение по количеству совпадающих существенных признаков выбрано в качестве прототипа.

Известное ампульное устройство предназначено для изучения свободного распухания и совместного свелинга системы топливо-оболочка и состоит из высокотемпературной капсулы цилиндрической формы, внутри которой размещены образцы, покрытые тугоплавким металлом. Капсула снабжена газовой магистралью для заполнения инертными газами. На выходе магистрали установлены пневматические клапаны для герметизации капсулы. Капсула размещена в нержавеющей оболочке с радиальным зазором, заполненным инертным газом с различной теплопроводностью.

Капсула ампульного устройства снабжена датчиками нейтронного потока и температуры. Ампульное устройство позволяет облучать образцы при тепловыделении 60÷240 Вт/см3 и температурах на оболочке образцов 1600-2200 K. Ампульное устройство является инструментированным и позволяет регулировать параметры облучения при испытаниях.

Однако данное техническое решение имеет ряд недостатков:

- не позволяет анализировать в ходе эксперимента газообразные продукты деления (ГПД), выделяющиеся при ядерном распаде;

- не позволяет измерять температуру исследуемого образца в ходе эксперимента;

- герметизация рабочей полости ампульного устройства осуществляется пневмоклапанами, что усложняет конструкцию и технологию изготовления устройства, кроме того, процесс разгерметизации происходит под воздействием высокого давления на рабочий элемент клапана, что предполагает наличие в испытательном стенде дополнительного оборудования, например газовой магистрали высокого давления.

Задачей, на решение которой направлено настоящее изобретение, является создание ампульного устройства для реакторных исследований, позволяющее измерять температуру исследуемых образцов в ходе эксперимента, проводить анализ ГПД, выделяющихся при ядерном распаде в процессе проведения эксперимента, иметь простые с конструктивной и технологической точки зрения механизмы временной герметизации рабочей полости.

Поставленная задача и технический результат достигаются тем, что в ампульном устройстве для реакторных исследований, включающем оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула, с исследуемыми образцами, помещенными в негерметичную тонкостенную оболочку из тугоплавкого материала, согласно изобретению капсула снабжена помимо одной газовой магистрали дополнительной магистралью с возможностью проточной вентиляции рабочей полости капсулы, на выходе каждой магистрали установлены заглушки для временной герметизации капсулы, выполненные в виде втулок с осевыми отверстиями, заполненными легкоплавким материалом, термометрические датчики, заключенные в герметичные чехлы, расположены в одной из магистралей, при этом чувствительный элемент каждого датчика введен в рабочую полость капсулы.

Герметичное соединение капсулы с оболочкой ампульного устройства может быть осуществлено при помощи сильфона, размещенного в одной из магистралей.

В частном варианте исполнения втулка, расположенная в магистрали с термометрическими датчиками, может быть снабжена дополнительными осевыми отверстиями для размещения чехлов термометрических датчиков, герметизированных с втулкой при помощи паяного соединения.

Ампульное устройство может быть дополнительно снабжено теплоотводящим радиатором, установленным внутри с зазором коаксиально оболочке ампульного устройства, при этом в теплоотводящем радиаторе выполнены осевые отверстия, расположенные по окружности на одинаковом осевом расстоянии от торца радиатора, для установки капсул с исследуемыми образцами.

Введение в ампульное устройство дополнительной магистрали позволяет анализировать в ходе эксперимента газообразные продукты деления (ГПД), выделяющиеся при ядерном распаде, за счет проточной вентиляции рабочей полости капсулы, которая обеспечивает транспортировку ГПД к анализирующему стенду реактора.

Расположение чувствительных элементов термометрических датчиков в рабочей полости капсулы позволяет измерять в ходе эксперимента непосредственно температуру исследуемого образца.

Конструктивное исполнение заглушек для временной герметизации рабочей полости капсулы в виде втулок с осевыми отверстиями, заполненными легкоплавким материалом, упрощает технологию изготовления заглушек. Кроме того, такое исполнение упрощает процесс разгерметизации рабочей полости капсулы, при этом не требуется создания в магистралях высокого давления.

Наличие в конструкции ампульного устройства теплоотводящего радиатора, в осевых отверстиях которого установлены капсулы на одинаковом осевом расстоянии от торца радиатора (соответственно на одном уровне активной зоны реактора), позволяет одновременно в одинаковых условиях испытывать несколько исследуемых образцов в автономных капсулах.

Сущность заявленного изобретения поясняется чертежом, на котором схематически изображена конструкция ампульного устройства.

Ампульное устройство состоит из цилиндрической оболочки (1) с двумя торцевыми герметизирующими крышками (2, 3), цилиндрического теплоотводящего радиатора (4), установленного внутри оболочки (1) коаксиально последней с зазором, оптимальным для отвода тепла. В осевых отверстиях радиатора (4), выполненных на одинаковом осевом расстоянии от торца радиатора, расположены капсулы (5) из нержавеющей стали. Каждая капсула включает в себя исследуемый тепловыделяющий образец (6), заключенный в тонкостенную оболочку (7) из тугоплавкого материала. Каждая капсула герметично соединена с газовыми магистралями (8, 9) и с оболочкой (1) ампульного устройства при помощи сильфона (10), установленного в одну из газовых магистралей. На выходе газовых магистралей установлены заглушки (11, 12), выполненные в виде втулок (13, 14). Втулка (13) имеет осевые отверстия (15, 16) для установки термодатчиков и отверстие (17) для прохода газов. Втулка (14) также снабжена отверстием (18) для прохода газов. Отверстия (17, 18) заполнены припоем из легкоплавкого материала. Герметичные чехлы (19, 20) термодатчиков установлены в осевых отверстиях (15, 16) и герметично соединены с втулкой (13), а чувствительные элементы (21) термодатчиков введены в рабочую полость (22) капсулы (5). Кроме того, в капсуле предусмотрены тарельчатые пружины (23), проставки (24), направляющая втулка (25).

На чертеже представлен вариант ампульного устройства с тремя капсулами, установленными в осевых отверстиях теплоотводящего радиатора, которые выполнены на одинаковом осевом расстоянии от торца радиатора, что дает возможность проводить испытания образцов при одинаковых потоках нейтронов в реакторе. Однако капсул может быть другое количество.

Работа предложенного ампульного устройства осуществляется следующим образом. Ампульное устройство, в состав которого входят одна или несколько капсул с исследуемыми образцами твэлов, присоединяется к газовым коммуникациям реактора. При этом заранее осуществляется заполнение инертным газом рабочей полости капсулы, в которой расположены исследуемые образцы твэлов, временная герметизация ее при помощи легкоплавкого материала заглушек. Чувствительные элементы термодатчиков, расположенные в герметично введенных в полости исследуемых образцов чехлах, заводятся в газовые магистрали капсул. Соединение ампульного устройства с газовыми коммуникациями реактора осуществляется при помощи сварки. После того как газовые магистрали ампульного устройства будут герметизированы, осуществляется разрушение плавкого материала заглушек за счет нагрева мест их расположения и создания разности давлений в нужном направлении. Далее вся сборка устанавливается в ячейку реактора.

При выходе устройства на номинальный режим исследуемый образец (6) входит в контакт с тонкостенной оболочкой (7) вследствие теплового расширения. Тонкостенная оболочка образца позволяет ему свободно расширяться. Для компенсации осевого расширения образца предусмотрены тарельчатые пружины (23). При этом между тонкостенной оболочкой (7) и оболочкой капсулы (5) остается зазор для прохода газов.

Система позволяет регулировать условия теплопередачи с поверхности твэлов к теплоносителю (вода) с помощью изменения состава газа в зазоре между тонкостенной оболочкой (7) и оболочкой капсулы (5).

Пример конкретного осуществления.

Разработана конструкция ампульного устройства для испытания топливных образцов UN в реакторе ИВВ-2М.

Ампульное устройство содержит оболочку из нержавеющей стали толщиной 1 мм и диаметром 54 мм, две торцевые крышки с отверстиями для газовых магистралей, алюминиевый цилиндрический радиатор с выполненными в нем тремя осевыми отверстиями, в которых расположены капсулы. Каждая капсула имеет оболочку из нержавеющей стали толщиной 1 мм, в которую с зазором 200 мкм помещен исследуемый топливный образец в тонкостенной оболочке, две торцевые крышки с герметично присоединенными к ним газовыми магистралями из нержавеющей стали. Топливный образец диаметром 8 мм и длиной 35 мм установлен в тонкостенную оболочку из монокристаллического вольфрама толщиной 0,3 мм с зазором 30 мкм. Один из датчиков введен в топливный образец. Второй термодатчик расположен за пределами исследуемого образца, контактирует с оболочкой через проставку из молибдена и служит для контроля температуры тонкостенной оболочки исследуемого образца. В каждой газовой магистрали установлена втулка с осевым отверстием диаметром 22 мм, заполненным легкоплавким припоем ПОС61 для временной герметизации капсулы. Причем одна из втулок снабжена двумя дополнительными отверстиями диаметром 2 мм, в которые впаяны чехлы термодатчиков, выполненные из молибдена. Оболочки капсул соединены с оболочкой ампульного устройства через сильфоны из нержавеющей стали. Для компенсации осевого расширения исследуемого топливного образца введены тарельчатые пружины из сплава ВР-27.

Конструкция ампульного устройства позволяет осуществить полную сборку при условии отсутствия контакта исследуемого образца с кислородом.

Система позволяет транспортировать газообразные продукты деления к анализирующему стенду реактора путем осуществления проточной вентиляции рабочей полости капсулы через газовые магистрали. Это дает возможность анализировать выделяющиеся в ходе эксперимента ГПД.

Ампульное устройство позволяет одновременно в одинаковых условиях испытывать несколько исследуемых образцов в автономных капсулах, расположенных в теплоотводящем радиаторе на одном осевом расстоянии от торца радиатора, соответственно - на одном уровне активной зоны реактора.

После окончания испытаний при проведении послереакторных исследований капсул непосредственное измерение геометрии исследуемых образцов позволит оценивать изменение размеров в конкретных условиях облучения.


АМПУЛЬНОЕ УСТРОЙСТВО ДЛЯ РЕАКТОРНЫХ ИССЛЕДОВАНИЙ
Источник поступления информации: Роспатент

Показаны записи 421-430 из 753.
16.01.2019
№219.016.afc2

Способ определения коэффициента трения скольжения

Изобретение относится к области механических испытаний материалов, в частности к определению коэффициента трения скольжения при взаимном перемещении образцов. Сущность: образец одного материала изготавливают в виде цилиндрического стержня, а из второго материала изготавливают образец, состоящий...
Тип: Изобретение
Номер охранного документа: 0002677110
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b03f

Оптический передатчик

Изобретение относится к аналоговой оптической связи и может быть использовано для передачи аналоговых сигналов в условиях помех от работы мощных импульсных электрофизических установок, а также для передачи аналоговых сигналов на дальние расстояния (несколько километров). Сущность изобретения: в...
Тип: Изобретение
Номер охранного документа: 0002677112
Дата охранного документа: 15.01.2019
18.01.2019
№219.016.b175

Уплотнительное устройство

Изобретение относится к области машиностроения, а именно к разделу уплотнительная техника, и может быть применено в качестве уплотнительного устройства для любого подвижного цилиндрического элемента, отслеживающего изменение линейных размеров материалов в диапазоне эксплуатационных температур....
Тип: Изобретение
Номер охранного документа: 0002677434
Дата охранного документа: 16.01.2019
24.01.2019
№219.016.b2d8

Гидростатический включатель

Изобретение относится к области приборостроения, в частности для использования в системах автоматики взрывоопасных технических объектов, имеющих в своем составе гидравлические системы или погружаемых в водную среду, с которыми при хранении и эксплуатации возможны аварийные ситуации. Устройство...
Тип: Изобретение
Номер охранного документа: 0002677838
Дата охранного документа: 21.01.2019
24.01.2019
№219.016.b312

Измеритель температуры и способ ее измерения

Группа изобретений относится к измерительным преобразователям температуры с алгоритмической коррекцией погрешности измерений. Изобретения могут быть использованы для преобразования текущего значения температуры в цифровой код и передачи его во внешнее устройство. Способ измерения температуры...
Тип: Изобретение
Номер охранного документа: 0002677786
Дата охранного документа: 21.01.2019
29.01.2019
№219.016.b510

Высоковольтный переход

Изобретение относится к электротехнике и может быть использовано для ввода электрических проводников в загрязненную зону. Высоковольтный переход содержит герметично установленный в стенке защитной конструкции металлический корпус с герметично установленным в нем при помощи уплотнительного...
Тип: Изобретение
Номер охранного документа: 0002678314
Дата охранного документа: 28.01.2019
03.02.2019
№219.016.b6a7

Антенна вибраторного типа летательного аппарата

Изобретение относится к области радиотехники, а именно к области антенн летательных аппаратов. Может быть использовано в дециметровом диапазоне длин волн в качестве передающей или приемной антенны, в том числе антенны летательного аппарата, имеющего участок траектории с пониженным атмосферным...
Тип: Изобретение
Номер охранного документа: 0002678777
Дата охранного документа: 01.02.2019
13.02.2019
№219.016.b981

Упругая компенсирующая муфта

Изобретение относится к области машиностроении, а более конкретно к муфтам. Упругая компенсирующая муфта содержит два фланцевых элемента, соединенных упругими элементами в виде пластин, прикрепленных по окружности к каждому из них. Фланцевые элементы имеют разные диаметры. Упругие элементы...
Тип: Изобретение
Номер охранного документа: 0002679519
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9be

Вибраторная антенна

Изобретение относится к области радиотехники, а именно к области вибраторных антенн, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах или в системах сотовой связи. Вибраторная антенна содержит первый металлический...
Тип: Изобретение
Номер охранного документа: 0002679487
Дата охранного документа: 11.02.2019
14.02.2019
№219.016.b9e4

Система формирования облучения мишени и модуль фокусировки и наведения излучения на нее

Изобретение относится к лазерной области техники и может быть использовано в конструкции установок для транспортировки, измерения параметров и фокусировки лазерного излучения на мишени и формирования пятна облучения с заданными характеристиками. Суть изобретения состоит в том, что в системе...
Тип: Изобретение
Номер охранного документа: 0002679665
Дата охранного документа: 12.02.2019
Показаны записи 311-316 из 316.
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
21.04.2023
№223.018.504f

Комплекс защиты от несанкционированного съема информации на мобильных устройствах

Изобретение относится к электронной технике, в частности к средствам защиты от неправомерного доступа персональных устройств. Система включает в себя персональное устройство, состоящее из основной части (ядро персонального устройства, не менее чем одно периферийное устройство, источник...
Тип: Изобретение
Номер охранного документа: 0002794169
Дата охранного документа: 12.04.2023
17.06.2023
№223.018.7dbf

Ампульное облучательное устройство для реакторных исследований

Изобретение относится к ампульному облучательному устройству, которое может использоваться для реакторных исследований свойств тепловыделяющих элементов, а именно - микросферического капсулированного ядерного топлива (микротвэлов) для высокотемпературных газоохлаждаемых реакторов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002781552
Дата охранного документа: 13.10.2022
+ добавить свой РИД